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Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

�e following theorem is very useful for running time analysis of divide-and-conquer algorithms.

�eorem 1 (Master theorem). Let a,C > 0 and b ≥ 0 be constants and T : N → R+ a function such
that for all even n ∈ N,

T (n) ≤ aT (n/2) + Cnb. (1)

�en for all n = 2k, k ∈ N,

• If b > log2 a, T (n) ≤ O(nb).

• If b = log2 a, T (n) ≤ O(nlog2 a · log n).

• If b < log2 a, T (n) ≤ O(nlog2 a).

If the function T is increasing, then the condition n = 2k can be dropped. If (1) holds with “=”, then we
may replace O with Θ in the conclusion.

�is theorem generalizes some results that you have seen in this course. For example, the running
time of Karatsuba algorithm satis�es T (n) ≤ 3T (n/2) + 100n, so a = 3 and b = 1 < log2 3, hence
T (n) ∈ O(nlog2 3). Another example is binary search: its running time satis�es T (n) ≤ T (n/2)+100,
so a = 1 and b = 0 = log2 1, hence T (n) ∈ O(log n).

In parts a), b) and c) of the �rst exercise you will see some examples of recurrences that can be analyzed
in O-Notation using Master theorem. �ese three examples show that the bounds in Master theorem
are tight.

Exercise 4.1 Solving Recurrences (1 point).

For this exercise, assume that n is a power of two (that is, n = 2k, where k ∈ {0, 1, 2, 3, 4, . . .}).

a) Consider the following algorithm:



Algorithm 1 g(n)

if n > 1 then
for i = 1, . . . , 5 do

for j = 1, . . . , n do
for k = 1, . . . , n do

f()

g(n/2)
g(n/2)

else
f()

�e number of calls of f is given by the recurrence relation T (1) = 1 and T (n) = 2T (n2 ) + 5n2 for
n ≥ 2. Using mathematical induction show that T (n) = 10 · n2 − 9n.

b) Consider the following algorithm:

Algorithm 2 g(n)

if n > 1 then
for i = 1, . . . , 3n do

f()

g(n/2)
g(n/2)

else
f()
f()

�e number of calls of f is given by the recurrence relation T (1) = 2 and T (n) = 2T (n2 ) + 3n, for
n ≥ 2. Using mathematical induction show that T (n) = 2n + 3n log2 n.

c) Consider the following algorithm:

Algorithm 3 g(n)

if n > 1 then
for i = 1, . . . , 8 do

g(n/2)

for i = 1, . . . , 4 do
for j = 1, . . . , n do

for k = 1, . . . , n do
f()

else
f()
f()
f()

�e number of calls of f is given by the recurrence relation T (1) = 3 and T (n) = 8T (n2 ) + 4n2,
for n ≥ 2. Using mathematical induction show that T (n) = 7n3 − 4n2.
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�e following de�nition is closely related to O-Notation and is also useful in running time analysis of
algorithms.

De�nition 1 (Ω-Notation). Let f, g : N → R+. We say that g ≥ Ω(f) if there exists C > 0 (that may
depend on g) such that for all n ∈ N , g(n) ≥ Cf(n).

As forO-Notation, typicallyN = N, but sometimes we will consider other sets, e.g. N = {2, 3, 4, . . .}.

Exercise 4.2 Asymptotic notations.

a) Show that g ≥ Ω(f) if and only if f ≤ O(g).

b) As a reminder, we write g = Θ(f) if g ≤ O(f) and g ≥ Ω(f) at the same time. Describe the
(worst-case) running time of the following algorithms in Θ-Notation.

1) Karatsuba algorithm.

2) Binary Search.

3) Bubble Sort.

c) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn ≤ O(

√
n) � �

log(n!) ≥ Ω(n2) � �

nk ≥ Ω(kn), if 1 < k ≤ O(1) � �

log3 n
4 = Θ(log7 n

8) � �

d) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.
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Exercise 4.3 Proving an invariant (1 point).

Let n ∈ N be an odd integer. Consider the following algorithm that starts with the list of all integers
from 1 to 2n and returns a single integer:

Algorithm 4 A(n)

L← [1, 2, . . . , 2n]
while length(L) > 1 do

Choose any two di�erent elements a and b in L.
Remove a and b from L, and add |a− b| to L.

return L[1]

Here length(L) denotes the number of elements contained in the list L, and L[1] denotes its �rst
element.

�e goal of this exercise is to prove that, no ma�er how the two elements a and b are chosen, the
algorithm will never return a zero.

a) Explain brie�y why A(n) always terminates. How many times does it enter the while loop ?

b) Let S(L) :=
∑

k∈L k be the sum of all elements of L. Prove that the parity of S(L) is an invariant
of the algorithm, i.e. that a�er each iteration of the while loop, the value of S mod 2 is the same.

c) Deduce that A(n) never returns the number 0.

Exercise 4.4 Finding fake coins with a balance scale (1 point).

Figure 1: Balance scale.

Imagine that you are given n ’1 franc’ coins of which k coins are fake. �e fake coins are slightly heavier
than the real ones, but all fake coins have the same weight. In order to determine which coins are fake,
you are allowed to use a balance scale (see. Figure 1). Using the balance scale you can determine
whether the coins you put onto the le� side are heavier, lighter, or the same weight as the ones you put
on the right side.

a) Consider the problem with n = 9 and k = 1. Draw a decision tree (called ’Entscheidungsbaum’ in
the lecture) for a strategy of your choice.

b) Prove that for k = 1 even the best possible algorithm requires at least log3(n) − 1 comparisons to
�nd the fake coin in the worst case.

c) For k = 1, provide an algorithm that �nds the fake coin and requires exactly dlog3(n)e comparisons
in the worst case.

d*) Prove that for k ≥ 1 even the best algorithm requires at least k log3(
n
k ) + (n − k) log3(

n
n−k ) −

O(log(n)) comparisons in the worst case.
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For this exercise, you may use the so-called Stirling approximation

ln(n!) = n lnn− n + Θ(lnn)

without further justi�cation.

Hint: Show using an decision tree that the number w of maximally required comparisons satis�es
the inequality 3w+1 >

(
n
k

)
.
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