
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 12. October 2020
Markus Püschel, David Steurer
Johannes Lengler, Gleb Novikov, Chris Wendler, Ulysse Schaller

Algorithms & Data Structures Exercise sheet 4 HS 20

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 19th.

Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

�e following theorem is very useful for running time analysis of divide-and-conquer algorithms.

�eorem 1 (Master theorem). Let a,C > 0 and b ≥ 0 be constants and T : N → R+ a function such
that for all even n ∈ N,

T (n) ≤ aT (n/2) + Cnb. (1)

�en for all n = 2k, k ∈ N,

• If b > log2 a, T (n) ≤ O(nb).

• If b = log2 a, T (n) ≤ O(nlog2 a · log n).

• If b < log2 a, T (n) ≤ O(nlog2 a).

If the function T is increasing, then the condition n = 2k can be dropped. If (1) holds with “=”, then we
may replace O with Θ in the conclusion.

�is theorem generalizes some results that you have seen in this course. For example, the running
time of Karatsuba algorithm satis�es T (n) ≤ 3T (n/2) + 100n, so a = 3 and b = 1 < log2 3, hence
T (n) ∈ O(nlog2 3). Another example is binary search: its running time satis�es T (n) ≤ T (n/2)+100,
so a = 1 and b = 0 = log2 1, hence T (n) ∈ O(log n).

In parts a), b) and c) of the �rst exercise you will see some examples of recurrences that can be analyzed
in O-Notation using Master theorem. �ese three examples show that the bounds in Master theorem
are tight.

Exercise 4.1 Solving Recurrences (1 point).

For this exercise, assume that n is a power of two (that is, n = 2k, where k ∈ {0, 1, 2, 3, 4, . . .}).

a) Consider the following algorithm:

Algorithm 1 g(n)

if n > 1 then
for i = 1, . . . , 5 do

for j = 1, . . . , n do
for k = 1, . . . , n do

f()

g(n/2)
g(n/2)

else
f()

�e number of calls of f is given by the recurrence relation T (1) = 1 and T (n) = 2T (n2) + 5n2 for
n ≥ 2. Using mathematical induction show that T (n) = 10 · n2 − 9n.

b) Consider the following algorithm:

Algorithm 2 g(n)

if n > 1 then
for i = 1, . . . , 3n do

f()

g(n/2)
g(n/2)

else
f()
f()

�e number of calls of f is given by the recurrence relation T (1) = 2 and T (n) = 2T (n2) + 3n, for
n ≥ 2. Using mathematical induction show that T (n) = 2n + 3n log2 n.

c) Consider the following algorithm:

Algorithm 3 g(n)

if n > 1 then
for i = 1, . . . , 8 do

g(n/2)

for i = 1, . . . , 4 do
for j = 1, . . . , n do

for k = 1, . . . , n do
f()

else
f()
f()
f()

�e number of calls of f is given by the recurrence relation T (1) = 3 and T (n) = 8T (n2) + 4n2,
for n ≥ 2. Using mathematical induction show that T (n) = 7n3 − 4n2.

2

�e following de�nition is closely related to O-Notation and is also useful in running time analysis of
algorithms.

De�nition 1 (Ω-Notation). Let f, g : N → R+. We say that g ≥ Ω(f) if there exists C > 0 (that may
depend on g) such that for all n ∈ N , g(n) ≥ Cf(n).

As forO-Notation, typicallyN = N, but sometimes we will consider other sets, e.g. N = {2, 3, 4, . . .}.

Exercise 4.2 Asymptotic notations.

a) Show that g ≥ Ω(f) if and only if f ≤ O(g).

b) As a reminder, we write g = Θ(f) if g ≤ O(f) and g ≥ Ω(f) at the same time. Describe the
(worst-case) running time of the following algorithms in Θ-Notation.

1) Karatsuba algorithm.

2) Binary Search.

3) Bubble Sort.

c) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn ≤ O(

√
n) � �

log(n!) ≥ Ω(n2) � �

nk ≥ Ω(kn), if 1 < k ≤ O(1) � �

log3 n
4 = Θ(log7 n

8) � �

d) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn ≥ Ω(n1/2) � �

log7(n
8) = Θ(log3(n

√
n)) � �

3n4 + n2 + n ≥ Ω(n2) � �

(∗) n! ≤ O(nn/2) � �

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.

3

Exercise 4.3 Proving an invariant (1 point).

Let n ∈ N be an odd integer. Consider the following algorithm that starts with the list of all integers
from 1 to 2n and returns a single integer:

Algorithm 4 A(n)

L← [1, 2, . . . , 2n]
while length(L) > 1 do

Choose any two di�erent elements a and b in L.
Remove a and b from L, and add |a− b| to L.

return L[1]

Here length(L) denotes the number of elements contained in the list L, and L[1] denotes its �rst
element.

�e goal of this exercise is to prove that, no ma�er how the two elements a and b are chosen, the
algorithm will never return a zero.

a) Explain brie�y why A(n) always terminates. How many times does it enter the while loop ?

b) Let S(L) :=
∑

k∈L k be the sum of all elements of L. Prove that the parity of S(L) is an invariant
of the algorithm, i.e. that a�er each iteration of the while loop, the value of S mod 2 is the same.

c) Deduce that A(n) never returns the number 0.

Exercise 4.4 Finding fake coins with a balance scale (1 point).

Figure 1: Balance scale.

Imagine that you are given n ’1 franc’ coins of which k coins are fake. �e fake coins are slightly heavier
than the real ones, but all fake coins have the same weight. In order to determine which coins are fake,
you are allowed to use a balance scale (see. Figure 1). Using the balance scale you can determine
whether the coins you put onto the le� side are heavier, lighter, or the same weight as the ones you put
on the right side.

a) Consider the problem with n = 9 and k = 1. Draw a decision tree (called ’Entscheidungsbaum’ in
the lecture) for a strategy of your choice.

b) Prove that for k = 1 even the best possible algorithm requires at least log3(n) − 1 comparisons to
�nd the fake coin in the worst case.

c) For k = 1, provide an algorithm that �nds the fake coin and requires exactly dlog3(n)e comparisons
in the worst case.

d*) Prove that for k ≥ 1 even the best algorithm requires at least k log3(
n
k) + (n − k) log3(

n
n−k) −

O(log(n)) comparisons in the worst case.

4

For this exercise, you may use the so-called Stirling approximation

ln(n!) = n lnn− n + Θ(lnn)

without further justi�cation.

Hint: Show using an decision tree that the number w of maximally required comparisons satis�es
the inequality 3w+1 >

(
n
k

)
.

5

