
General information
You can open an interactive version of this document at this URL:

https://jhub-node01.inf.ethz.ch/aud2021/user-redirect/lab/tree/aud2021/AD21-01_karatsuba.i
pynb

You can use your nethz account to log into the server (same account as for your email at ETH).

The documented is hosted in a directory /aud2021/ that is shared with all students. You can run
the code in the document and edit the document, but you cannot save it in this shared directory. If
you wish to save your edits, you can do so in the root path / (e.g., using the keyboard Ctrl+Shift-S
to invoke the command Save notebook as ...). This path corresponds to the home directory of
your user on the server jhub-node01.inf.ethz.ch. Files in this home directory are not visible to
other users of the server.

Disclaimer
The material in this document is completely optional and not considered to be part of the course
“Algorithmen und Datenstrukturen”. The aim of this document is to give you an idea how to
translate high-level algorithmic ideas discussed in class to actual Java code. This Java code
may use programming concepts that have not yet been covered in the course “Einführung in die
Programmierung” at this time. The slides and recorded lectures for the “Vorkus” may serve as a
useful reference.

At the above URL, you can interact with this Java code by modifying the inputs, running the
code, and potentially modifying the code. You can always return to the original version of the
document by closing the document, confirming that you wish to discard your changes, and opening
the document again.

Hidden code cells
This document contains several hidden code cells. The code in these cells can safely be ignored.

Interacting with this document in jupyterlab
If you view the interactive version of this document at the above URL, you first need to run all
code cells before you can interact with the document. In order to run all code cells invoke the
command Run -> Run All Cells in the menu bar.

Problem Statement

input output operations
integers a, b ∈ N product c = a · b add / multiply digits

Grade-school Algorithm
The grade-school algorithm for integer multiplication proceeds in two steps:

1. compute partial products by multiplying every digit of a with every digit of b,
2. sum up these partial products moved to the appropriate decimal position.

The following table illustrates for a concrete example how these two steps work.

1

https://jhub-node01.inf.ethz.ch/aud2021/user-redirect/lab/tree/aud2021/AD21-01_karatsuba.ipynb
https://jhub-node01.inf.ethz.ch/aud2021/user-redirect/lab/tree/aud2021/AD21-01_karatsuba.ipynb
https://www.lst.inf.ethz.ch/education/vorkurs.html


a1 a0 b1 b0
6 5 · 2 1

5 a0 · b0
6 a1 · b0

1 0 a0 · b1
1 2 a1 · b1
1 3 6 5

The following mathematical identity justifies that for the case of two 2-digit numbers, this algorithm
computes the correct output.

(10 · a1 + a0) · (10 · b1 + b0) = a1b1 · 100 + (a0b1 + a1b0) · 10 + a0b0 .

(Note that the left-hand side is the output we desire and the right-hand side is the sum of partial
products computed by the algorithm.)

Can we do better?

What does it even mean for an algorithm to do better for this problem?

For starters, we will count the number of single-digit multiplications performed by the algorithm.

For the above example, we perform 4 single-digit multiplications (one operation for every partial
product).

How many single-digit multiplications would this algorithm perform to multiply two 4-digit numbers?

Answer: 16 (again one operation for every partial product)

How many single-digit multiplications would the algorithm carry out to multiply two n-digit
numbers?

Answer: n2 (there are n2 partial products because there are n choices of digits for a and n choices
of digits for b).

Is there a way to multiply two n-digit numbers with (significantly) fewer than n2 single-
digit multiplications?

Karatsuba’s Algorithm
Let us first consider the case n = 2.

If we look at the mathematical identity that we used to justify the correctness of the grade-school
algorithm, we see that we only need to know the following three numbers

a0 · b0, a1 · b1, (a0 · b1 + a1 · b0)

Naively, it takes two single-digit multiplications to compute the third number.

Could we compute the third number using just one single-digit multiplication?

In 1960, the Russian mathematician Anatoly Karatsuba discovered an algorithm to achieve that
feat. His algorithm works by negating numbers and reusing the previously computed single-digit
multiplications a0 · b0 and a1 · b1.

The following table illustrates how Karatsuba’s algorithm multiplies two 2-digit numbers using just
three single-digit multiplications.

2

https://en.wikipedia.org/wiki/Anatoly_Karatsuba


a1 a0 b1 b0
6 5 · 2 1

5 a0 · b0
1 2 a1 · b1

1 7 a1 · b1 + a0 · b0
−1 −(a1 − a0) · (b1 − b0)

1 3 6 5

This computation carries out exactly three single-digit multiplications, namely

a0 · b0, a1 · b1, (a1 − a0) · (b1 − b0) .

Similarly to the grade-school algorithm, we can illustrate the correctness of this computation by a
mathematical identity. Let us call the above products u, v, and w (so that u = a0 · b0, v = a1 · b1,
and w = (a1 − a0) · (b1 − b0)). Then, the following mathematical identity illustrates the correctness
of this computation,

(10 · a1 + a0) · (10 · b1 + b0) = u + (u + v − w) · 10 + v · 100 .

The following Java code is a complete implementation of Karatsuba’s algorithm to multiply two
2-digit numbers.
// Karatsuba's algorithm for n=2

// input values (feel free to change these values to any other valid input values)
int a1 = 6; int a0 = 5;
int b1 = 2; int b0 = 1;

// perform single digit multiplications
int u = a0 * b0;
int v = a1 * b1;
int w = (a1 - a0) * (b1 - b0);

// compute c0,c1,c2 such that a*b = c0 + 10*c1 + 100*c2
int c0 = u;
int c1 = u + v - w;
int c2 = v;

// extract decimal digits of c0 + 10*c1 + 100*c2
int carry0 = 0;
int d0 = (c0 + carry0)%10; int carry1 = (c0 + carry0)/10;
int d1 = (c1 + carry1)%10; int carry2 = (c1 + carry1)/10;
int d2 = (c2 + carry2)%10; int carry3 = (c2 + carry2)/10;
int d3 = carry3;

// display table with all input values, intermediate values, and output values
// (this code is just for illustration and not part of the algorithm)
displayKaratsuba(a0,a1,b0,b1,u,v,w,c0,c1,c2,carry0,carry1,carry2,carry3,d0,d1,d2,d3);

3



3 2 1 0
a 6 5
b 2 1
u 5
v 12
u 5
v 12
−w −1
c 12 16 5
carry 1 1 0 0
d 1 3 6 5

ð
Activity

Change the input values for a1,a0,b1,b0 to any other single-digit numbers. Re-run
the above cell by pressing Shift-Enter. Observe how the intermediate values and
the final result changes.

ð
Question

How large a value can you achieve for carry3 by adjusting the input values? How
about carry2 and carry1?

Illustration of Karatsuba’s algorithm for more digits
The following Java code serves to illustrate how Karatsuba’s algorithm works for inputs with more
than 2 digits. We emphasize that this Java code is not a proper implementation of Karatsuba’s
algorithm. In fact, this Java code turns out to be limited to inputs with at most 8 digits.

ð
Additional explanation

Why is this implementation limited to inputs with a small number of digits and not a
proper implementation of Karatsuba’s algorithm?
The main reason is that this implementation uses long, one of Java’s primitive data
types, to represent the input and the output values. A long data type can represent
only values between −263 and 263− 1. For example, if we choose input values a = 232

and 232 (10 decimal digits), then the output value 264 could not be represented as a
long.
In order to be able to deal with larger numbers, we could represent numbers as a list
of digits, where the length of the list is not restricted a priori (except by the amount
of available memory). Java provides such a representation in form of the BigInteger
class in the java.math package. We choose not to use this class here because we want
to restrict ourselves to more basic Java features at this point.

// partial implementation of Karatsuba's algorithm for illustration purposes
long Karatsuba(long a,long b,long k, int depth) {

// assertion: the decimal representations of a and b each have at most 2ˆk digits

// print the values of a and b;

4

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html


// indentation indicates depth of recursion
System.out.printf("%s%d*%d\n"," ".repeat(depth),a,b);

// base case: a and b are single-digit numbers
if (k==0) {

return a*b;
}

// compute p = 10ˆ{2ˆ{k-1}}
long p = power(10,power(2,k-1));

// compute highest 2ˆ{k-1} digits of a and b
long a1 = a / p; long b1 = b / p;
// compute lowest 2ˆ{k-1} digits of a and b
long a0 = a % p; long b0 = b % p;

// recursively compute the products a0*b0, a1*b1, (a1-a0)*(b1-b0)
long u = Karatsuba(a0,b0,k-1,depth+1);
long v = Karatsuba(a1,b1,k-1,depth+1);
long w = Karatsuba(a1 - a0,b1 - b0,k-1,depth+1);

// combine the results to obtain the product a*b
return u + p*(u+v-w) + p*p*v;

}

// illustration of Karatsuba's algorithm

// inputs (limite to 8 digit numbers)
long a = 67223345L;
long b = 84343592L;

// number of digits of inputs
long n = (long)Math.ceil(Math.max(Math.log10(a),Math.log10(b)));
// smallest integer k such that both a and b have at most 2ˆk digits
long k = (long)(Math.log(n)/Math.log(2));

// run Karatsuba's algorithm to multiply a and b
long result = Karatsuba(a,b,k,0);

System.out.printf("Output of Karatsuba's algorithm: %d\n", result);

System.out.println("Check standard multiplication has same output:");

result == a*b;

67223345*84343592
3345*3592

45*92
5*2
4*9
-1*7

33*35
3*5
3*3
0*-2

5



-12*-57
-2*-7
-1*-5
1*2

6722*8434
22*34

2*4
2*3
0*-1

67*84
7*4
6*8
-1*4

45*50
5*0
4*5
-1*5

3377*4842
77*42

7*2
7*4
0*2

33*48
3*8
3*4
0*-4

-44*6
-4*6
-4*0
0*-6

Output of Karatsuba's algorithm: 5669858383555240
Check standard multiplication has same output:

true

ð
Activity

Change the input values for a,b to any other 8-digit numbers. Re-run the above
cell by pressing Shift-Enter. Observe how the intermediate values and the final
result changes. Observe how the printed output represents the nested recursive
calls of the Karatsuba method. (You can see that a single multiplication of 8-digit
numbers is broken up into 3 multiplications of 4-digit numbers. Each multiplication
of 4-digit numbers is broken up into 3 multiplications of 2-digit numbers. Finally,
each multiplication of 2-digit numbers is broken up into 3 multiplications of 1-digit
numbers. In total, 27 multiplications of 1-digit numbers are carried out.)

6


	General information
	Disclaimer
	Hidden code cells
	Interacting with this document in jupyterlab

	Problem Statement
	Grade-school Algorithm
	Karatsuba's Algorithm
	Illustration of Karatsuba’s algorithm for more digits

