
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 1. November 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 6 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission:OnMonday, 8. November 2021, hand in your solution to your TA before the exercise class
starts. Exercises that are marked by ⇤ are challenge exercises.�ey do not count towards bonus points.

Exercise 6.1 Introduction to dynamic programming (1 point).

Consider the recurrence

F1 = 1

Fn =

✓
min
1i<n

F
2
i + F

2
n�i

◆
mod 3n for n � 2,

where a mod b is the remainder of dividing a by b.

a) Consider the following algorithm that computes F top-down

Algorithm 1 Computing F (n)

function F (n)
if n = 1 then

return 1
else

x F (1)2 + F (n� 1)2

for i = 2 . . . bn2 c do
x min(x, F (i)2 + F (n� i)2)

return x mod 3n

Lower bound the running time T (n) of the above algorithm (i.e., give a simple function g(n) such
that T (n) � ⌦(g(n))) and show that it has an exponential running time.

Hint: Prove by induction that T (n) � (3/2)n�1.

b) Improve the running time of the algorithm in (a) using memoization. Provide pseudo code of the
improved algorithm.

c) Compute F (n) bo�om-up using dynamic programming and state the running time of your algo-
rithm. Address the following aspects in your solution:



i) De�nition of the DP table: What are the dimensions of the table DP [. . .]? What is the meaning
of each entry?

ii) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

iii) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

iv) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

v) Running time: What is the running time of your solution?

Remark. �e “naive” algorithm from part (a) is called a top-down approach, while the DP algorithm
from part (c) is called a bo�om-up approach.

Exercise 6.2 Longest common substring: �nding an invariant (1 point).

Let ⌃ = {a, b, c, . . . , z} denote the alphabet. Given two strings ↵ = (↵1, . . . ,↵m) 2 ⌃m and � =
(�1, . . . ,�n) 2 ⌃n, we are interested in the length of their longest common substring, which is the lar-
gest integer k such that there are indices i and j with (↵i,↵i+1, . . . ,↵i+k�1) = (�j ,�j+1, . . . ,�j+k�1).
Note that this problem is di�erent from the longest common subsequence problem that you saw in the
lecture. For example, the longest common substring of ↵ = (a, a, b, c, b, a) and � = (a, b, a, b, c, a) is
(a, b, c), which is of length 3.

Below is the pseudo-code of an algorithm that computes the length of the longest common substring
of two strings ↵ 2 ⌃m and � 2 ⌃n using ⇥(mn) elementary operations:

Algorithm 2 LongestCommonSubstring(↵,�)
L 0m⇥n an m⇥ n matrix of zeros.
for i = 1, . . . ,m do

for j = 1, . . . , n do
if ↵i = �j then

if i = 1 or j = 1 then
Li,j = 1

else
Li,j = Li�1,j�1 + 1

else
Li,j = 0

// Your invariant from a) must hold here.
return max{Li,j : 1  i  m, 1  j  n}

a) Execute the algorithm on the strings ↵ = (a, b, c) and � = (c, a, b). Write down the value of the
matrix L a�er each pass of the inner for-loop.

b) Formulate an invariant INV (i, j) that holds a�er the (i, j)-th iteration of the for loops, i.e., a�er
the computation of Li,j in the pseudo-code.

Hint: Consider the subproblem of �nding the longest common substring that ends at some given indices
of ↵ and �.

2



c) Prove by induction that INV (i, j) holds for all 1  i  m and 1  j  n. Deduce that the
algorithm LongestCommonSubstring is correct.

Hint: You can perform induction over the minimum index k := min(i, j).

Exercise 6.3 Longest ascending subsequence.

�e longest ascending subsequence problem is concerned with �nding a longest subsequence of a given
array A of length n such that the subsequence is sorted in ascending order. �e subsequence does not
have to be contiguous and it may not be unique. For example if A = [1, 5, 4, 2, 8], a longest ascending
subsequence is 1, 5, 8. Other solutions are 1, 4, 8, and 1, 2, 8.

Given is the array:

[19, 3, 7, 1, 4, 15, 18, 16, 14, 6, 5, 10, 12, 19, 13, 17, 20, 8, 14, 11]

Use the dynamic programming algorithm from section 3.2. of the script to �nd the length of a lon-
gest ascending subsequence and the subsequence itself. Provide the intermediate steps, i.e., DP-table
updates, of your computation.

Exercise 6.4 Longest common subsequence.

Given are two arrays, A of length n, and B of length m, we want to �nd the their longest common
subsequence and its length. �e subsequence does not have to be contiguous. For example, if A =
[1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is 3.
Notice that 8, 2, 3 is another longest common subsequence.

Given are the two arrays:
A = [7, 6, 3, 2, 8, 4, 5, 1]

and
B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5],

Use the dynamic programming algorithm from Section 3.3 of the script to �nd the length of a longest
common subsequence and the subsequence itself. Show all necessary tables and information you used
to obtain the solution.

Exercise 6.5 Optimizing Starduck’s pro�t (1 point).

�e co�eeshop chain Starduck’s is planning to open several cafés in Bahnhofstrasse Zürich. �ere are
n possible locations 1, . . . , n for their shops on Bahnhofstrasse, ordered by their distance to Zürich
main station m1 < . . . < mn. Opening a shop at location i would yield Starduck’s a pro�t of pi > 0.
However, they are not allowed to open cafés that are too close to each other, namely any two cafés
should have distance at least d from each other, for some given value d > 0.

a) Provide an algorithm using dynamic programming that computes the maximum total pro�t that
Starduck’s can make on Bahnhofstrasse. In order to get full points, your algorithm should have
O(n log n) runtime.

Hint: Consider the subproblem of �nding the maximum total pro�t that Starduck’s can make if only
locations 1, . . . , i are available

Address the following aspects in your solution:

3



i) De�nition of the DP table: What are the dimensions of the table DP [. . .]? What is the meaning
of each entry?

ii) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

iii) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

iv) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

v) Running time: What is the running time of your solution?

b)* You now would like to recover not only the maximum total pro�t, but the corresponding locations
where shops should be opened in order to achieve this pro�t. How can you get this out of your DP
table in time O(n) ?

Remark. �ere might be multiple optimal opening strategies, and it is enough if you can recover
just one of them from the DP table.

4


