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Exercise 6.1 Introduction to dynamic programming (1 point).

Consider the recurrence
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mod 3n for n � 2,

where a mod b is the remainder of dividing a by b.

a) Consider the following algorithm that computes F top-down

Algorithm 1 Computing F (n)

function F (n)
if n = 1 then

return 1
else

x F (1)2 + F (n� 1)2

for i = 2 . . . bn2 c do
x min(x, F (i)2 + F (n� i)2)

return x mod 3n

Lower bound the running time T (n) of the above algorithm (i.e., give a simple function g(n) such
that T (n) � ⌦(g(n))) and show that it has an exponential running time.

Hint: Prove by induction that T (n) � (3/2)n�1.

b) Improve the running time of the algorithm in (a) using memoization. Provide pseudo code of the
improved algorithm.

c) Compute F (n) bo�om-up using dynamic programming and state the running time of your algo-
rithm. Address the following aspects in your solution:



i) De�nition of the DP table: What are the dimensions of the table DP [. . .]? What is the meaning
of each entry?

ii) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

iii) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

iv) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

v) Running time: What is the running time of your solution?

Remark. �e “naive” algorithm from part (a) is called a top-down approach, while the DP algorithm
from part (c) is called a bo�om-up approach.

Exercise 6.2 Longest common substring: �nding an invariant (1 point).

Let ⌃ = {a, b, c, . . . , z} denote the alphabet. Given two strings ↵ = (↵1, . . . ,↵m) 2 ⌃m and � =
(�1, . . . ,�n) 2 ⌃n, we are interested in the length of their longest common substring, which is the lar-
gest integer k such that there are indices i and j with (↵i,↵i+1, . . . ,↵i+k�1) = (�j ,�j+1, . . . ,�j+k�1).
Note that this problem is di�erent from the longest common subsequence problem that you saw in the
lecture. For example, the longest common substring of ↵ = (a, a, b, c, b, a) and � = (a, b, a, b, c, a) is
(a, b, c), which is of length 3.

Below is the pseudo-code of an algorithm that computes the length of the longest common substring
of two strings ↵ 2 ⌃m and � 2 ⌃n using ⇥(mn) elementary operations:

Algorithm 2 LongestCommonSubstring(↵,�)
L 0m⇥n an m⇥ n matrix of zeros.
for i = 1, . . . ,m do

for j = 1, . . . , n do
if ↵i = �j then

if i = 1 or j = 1 then
Li,j = 1

else
Li,j = Li�1,j�1 + 1

else
Li,j = 0

// Your invariant from a) must hold here.
return max{Li,j : 1  i  m, 1  j  n}

a) Execute the algorithm on the strings ↵ = (a, b, c) and � = (c, a, b). Write down the value of the
matrix L a�er each pass of the inner for-loop.

b) Formulate an invariant INV (i, j) that holds a�er the (i, j)-th iteration of the for loops, i.e., a�er
the computation of Li,j in the pseudo-code.

Hint: Consider the subproblem of �nding the longest common substring that ends at some given indices
of ↵ and �.
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c) Prove by induction that INV (i, j) holds for all 1  i  m and 1  j  n. Deduce that the
algorithm LongestCommonSubstring is correct.

Hint: You can perform induction over the minimum index k := min(i, j).

Exercise 6.3 Longest ascending subsequence.

�e longest ascending subsequence problem is concerned with �nding a longest subsequence of a given
array A of length n such that the subsequence is sorted in ascending order. �e subsequence does not
have to be contiguous and it may not be unique. For example if A = [1, 5, 4, 2, 8], a longest ascending
subsequence is 1, 5, 8. Other solutions are 1, 4, 8, and 1, 2, 8.

Given is the array:

[19, 3, 7, 1, 4, 15, 18, 16, 14, 6, 5, 10, 12, 19, 13, 17, 20, 8, 14, 11]

Use the dynamic programming algorithm from section 3.2. of the script to �nd the length of a lon-
gest ascending subsequence and the subsequence itself. Provide the intermediate steps, i.e., DP-table
updates, of your computation.

Exercise 6.4 Longest common subsequence.

Given are two arrays, A of length n, and B of length m, we want to �nd the their longest common
subsequence and its length. �e subsequence does not have to be contiguous. For example, if A =
[1, 8, 5, 2, 3, 4] and B = [8, 2, 5, 1, 9, 3], a longest common subsequence is 8, 5, 3 and its length is 3.
Notice that 8, 2, 3 is another longest common subsequence.

Given are the two arrays:
A = [7, 6, 3, 2, 8, 4, 5, 1]

and
B = [3, 9, 10, 8, 7, 1, 2, 6, 4, 5],

Use the dynamic programming algorithm from Section 3.3 of the script to �nd the length of a longest
common subsequence and the subsequence itself. Show all necessary tables and information you used
to obtain the solution.

Exercise 6.5 Optimizing Starduck’s pro�t (1 point).

�e co�eeshop chain Starduck’s is planning to open several cafés in Bahnhofstrasse Zürich. �ere are
n possible locations 1, . . . , n for their shops on Bahnhofstrasse, ordered by their distance to Zürich
main station m1 < . . . < mn. Opening a shop at location i would yield Starduck’s a pro�t of pi > 0.
However, they are not allowed to open cafés that are too close to each other, namely any two cafés
should have distance at least d from each other, for some given value d > 0.

a) Provide an algorithm using dynamic programming that computes the maximum total pro�t that
Starduck’s can make on Bahnhofstrasse. In order to get full points, your algorithm should have
O(n log n) runtime.

Hint: Consider the subproblem of �nding the maximum total pro�t that Starduck’s can make if only
locations 1, . . . , i are available

Address the following aspects in your solution:
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i) De�nition of the DP table: What are the dimensions of the table DP [. . .]? What is the meaning
of each entry?

ii) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

iii) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

iv) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

v) Running time: What is the running time of your solution?

b)* You now would like to recover not only the maximum total pro�t, but the corresponding locations
where shops should be opened in order to achieve this pro�t. How can you get this out of your DP
table in time O(n) ?

Remark. �ere might be multiple optimal opening strategies, and it is enough if you can recover
just one of them from the DP table.
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