
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 08. November 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 7 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 15 November 2021, hand in your solution to your TA before the exercise
class starts. Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus
points.

Exercise 7.1 Subset sum for general integers (1 point).

Let a1, . . . , an, t be n+1 integers inZ. We would like to check whether there is a subset I ✓ {1, . . . , n}

such that
X

i2I
ai = t. Here, we adopt the convention that if I is empty, then

X

i2I
ai = 0.

We have seen in class that if a1, . . . , an, t are positive, then we can solve this problem in O(nt) time
using dynamic programming. In this exercise, we would like to handle the case where some of the
integers a1, . . . , an, t could be negative or zero.

Provide a dynamic programming algorithm that solves the subset sum problem for general integers.�e

algorithm should have O

n ·

nX

i=1

|ai|

!
runtime.

Hint:�eDP table is two-dimensional, and its size is (n+1)⇥ (1 +
Pn

i=1 |ai|). Furthermore, for i > 0,
the entry DP [i][j] can be computed from DP [i� 1][j] and DP [i� 1][j � ai].

Address the following aspects in your solution:

1. De�nition of the DP table: What is the meaning of each entry?

2. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

3. Calculation order: In which order can entries be computed so that values needed for each entry have
been determined in previous steps?

4. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

5. Running time: What is the running time of your solution?

Exercise 7.2 Longest Snake.

You are given a game-board consisting of hexagonal �elds F1, . . . , Fn.�e �elds contain natural num-
bers v1, . . . , vn 2 N. Two �elds are neighbors if they share a border. We call a sequence of �elds
(Fi1 , . . . , Fik) a snake of length k if, for j 2 {1, . . . , k � 1}, Fij and Fij+1 are neighbors and their
values satisfy vij+1 = vij + 1. Figure 1 illustrates an example game board in which we highlighted the
longest snake.

For simplicity you can assume that Fi are represented by their indices. Also you may assume that you
know the neighbors of each �eld. �at is, to obtain the neighbors of a �eld Fi you may call N (Fi),
which will return the set of the neighbors of Fi. Each call of N takes unit time.

a) Provide a dynamic programming algorithm that, given a game-board F1, . . . , Fn, computes the
length of the longest snake.

1

2

3

3
4

5

6 7 8

1211
10

10 9

11 2

20

21

9

6

1312

1

5

Figure 1: Example of a longest snake.

Hint: Your algorithm should solve this problem usingO(n log n) time, where n is the number of hexa-
gonal �elds.

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

b) Provide an algorithm that takes as input F1, . . . Fn and a DP table from part a) and outputs the
longest snake. If there are more than one longest snake, your algorithm can output any of them.
State the running time of your algorithm in ⇥-notation in terms of n.

2

c)⇤ Find a linear time algorithm that �nds the longest snake. �at is, provide an O(n) time algorithm
that, given a game-board F1, . . . , Fn, outputs the longest snake (if there are more than one longest
snake, your algorithm can output any of them).

Exercise 7.3 Road trip (1 point).

You are planning a road trip for your summer holidays. You want to start from city C0, and follow
the only road that goes to city Cn from there. On this road from C0 to Cn, there are n � 1 other
cities C1, . . . , Cn�1 that you would be interested in visiting (all cities C1, . . . , Cn�1 are right on the
road from C0 to Cn). For each 0 i n, the city Ci is at kilometer ki of the road for some given
0 = k0 < k1 < . . . < kn�1 < kn.

You want to decide in which cities amongC1, . . . , Cn�1 you will make an additional stop (you will stop
in C0 and Cn anyway). However, you do not want to drive more than d kilometers without making a
stop in some city, for some given value d > 0 (we assume that ki < ki�1 + d for all i 2 [n] so that
this is satis�able), and you also don’t want to travel backwards (so from some city Ci you can only go
forward to cities Cj with j > i).

a) Provide a dynamic programming algorithm that computes the number of possible routes from C0 to
Cn that satis�es these conditions, i.e., the number of allowed subsets of stop-cities. In order to get
full points, your algorithm should have O(n2) runtime.

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

b) If you know that ki > ki�1 + d/10 for every i 2 [n], how can you turn the above algorithm into a
linear time algorithm (i.e., an algorithm that has O(n) runtime) ?

Exercise 7.4 Animals in the zoo (1 point).

A number n of animal species have been recently discovered in Africa. �e zoo of Zürich is interested
in acquiring as many animals from the new species as possible before a special exhibition that is taking
place on December 1st, and you were put in charge of this task. Because of the time constraint, you can
only organize one shipping of animals.�e shipment can hold a maximum total weight ofW . Further-
more, due to logistical constraints, you cannot isolate the animals during the shipment.�erefore, you
cannot simultaneously bring two animals where one of them is a predator of the other.

Let A1, . . . , An be the n > 4 discovered species. You know that the species A1, A2 and A3 are not
predators, but for 4 i n, the species Ai is a predator of only the species Ai�1, Ai�2 and Ai�3 (this
means that, for example, Ai it is not a predator of species Ai�4 or Ai+1).

3

For every 1 i n, an animal from the species Ai has weight wi > 0, and provides a value vi > 0
to the zoo. You would like to �gure out the collection of animals that you can bring to the zoo, and
which provides the maximum total value to the zoo. We assume that (wi)1in andW are all positive
integers. If you bring one animal from a species, then bringing another animal from the same species
does not provide any additional value to the zoo. �erefore, there is no point in bringing two or more
animals from the same species.

Provide a dynamic programming algorithm that solves this problem. �e input to your algorithm are
the weights (wi)1in and values (vi)1in of the animal species, and the maximum total weight W
that is allowed in one shipping. In order to get full points, the runtime of your algorithm should be
O(nW).

Address the following aspects in your solution:

1. Dimensions of the DP table: What are the dimensions of the table DP [. . .] ?

2. De�nition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry have
been determined in previous steps?

5. Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

6. Running time: What is the running time of your solution?

Exercise 7.5 Partitioning integers in three equal parts (This exercise is from the January 2021
exam).

You are given an array of n natural numbers a1, . . . , an 2 N summing to A :=
Pn

i=1 ai, which is a
multiple of 3. You want to determine whether it is possible to partition {1, . . . , n} into three disjoint
subsets I, J,K such that the corresponding elements of the array yield the same sum, i.e.

X

i2I
ai =

X

j2J
aj =

X

k2K
ak =

A

3
.

Note that I, J,K form a partition of {1, . . . , n} if and only if I \ J = I \ K = J \ K = ; and
I [J [K = {1, . . . , n}.

For example, the answer for the input [2, 4, 8, 1, 4, 5, 3] is yes, because there is the partition {3, 4},
{2, 6}, {1, 5, 7} (corresponding to the subarrays [8, 1], [4, 5], [2, 4, 3], which are all summing to 9). On
the other hand, the answer for the input [3, 2, 5, 2] is no.

Provide a dynamic programming algorithm that determines whether such a partition exists. Your algo-
rithm should have anO(nA2) runtime to get full points. Address the following aspects in your solution:

1) De�nition of the DP table: What are the dimensions of the table DP [. . .] ? What is the meaning
of each entry?

2) Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

4

4) Extracting the solution: How can the �nal solution be extracted once the table has been �lled?

5) Running time: What is the running time of your algorithm? Provide it in ⇥-notation in terms of
n and A, and justify your answer.

5

