
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 29. November 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 10 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 6 December 2021, hand in your solution to your TA before the exercise class
starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 10.1 Breadth-First Search (1 point).

Execute a breadth-�rst search (Breitensuche) on the following (directed) graph starting from vertex A.
Use the algorithm presented in the lecture.

When processing the neighbors of a vertex, process them in alphabetical order.

A B

D E F

CG H

a) Provide the BFS order of visit of the nodes.

b) Provide the enter and leave time of each node.

c) Indicate the shortest-path-tree that is obtained by BFS.

d) Determine the distance from A to every node in the graph.

Exercise 10.2 Depth-First Search (1 point).

Execute a depth-�rst search (Tiefensuche) on the following graph starting from vertex A. Use the algo-
rithm presented in the lecture. When processing the neighbors of a vertex, process them in alphabetical
order.



A B

D E F

CG H

a) Mark the edges that belong to the depth-�rst tree (Tiefensuchbaum) with a “T” (for tree edge).

b) For each vertex, give its pre- and post-number.

c) Give the vertex ordering that results from sorting the vertices by pre-number. Give the vertex orde-
ring that results from sorting the vertices by post-number.

d) Mark every forward edge (Vorwärtskante) with an “F”, every backward edge (Rückwärtskante) with
an “B”, and every cross edge (�erkante) with a “C”.

e) Does the above graph have a topological ordering? How can we use the above execution of depth-
�rst search to �nd a directed cycle?

f) Draw a scale from 1 to 16, and mark for every vertex v the interval Iv from pre-number to post-
number of v. What does it mean if Iu ⊂ Iv for two di�erent vertices u and v?

g) Consider the graph above with the edge from E to D removed. How does the execution of depth-�rst
search change? Which topological sorting does the depth-�rst search give? If you sort the vertices
by pre-number, does this give a topological sorting?

Exercise 10.3 Data structures for graphs.

Consider three types of data structures for storing a graph G with n vertices andm edges:

a) Adjacency matrix.

b) Adjacency lists:
1

1

1

1

1

2

2

2

2

3

3

4

4

4

45

5

5

6

6

c) Adjacency lists, and additionally we store the degree of each node, and there are pointers between
the two occurences of each edge. (An edge appears in the adjacency list of each endpoint).

2



1

1

1

1

1

2

2

2

2

3

3

4

5

5

5

4

4

4

6

6

deg: 4

deg: 3

deg: 1

deg: 3

deg: 2

deg: 1

For each of the above data structures, what is the required memory (in Θ-Notation)?

Which runtime (worst case, in Θ-Notation) do we have for the following queries? Give your answer
depending on n,m, and/or deg(u) and deg(v) (if applicable).

(i) Input: A vertex v ∈ V . Find deg(v).

(ii) Input: A vertex v ∈ V . Find a neighbour of v (if a neighbour exists).

(iii) Input: Two vertices u, v ∈ V . Decide whether u and v are adjacent.

(iv) Input: Two adjacent vertices u, v ∈ V . Delete the edge e = {u, v} from the graph.

(v) Input: A vertex u ∈ V . Find a neighbor v ∈ V of u and delete the edge {u, v} from the graph.

(vi) Input: Two vertices u, v ∈ V with u 6= v. Insert an edge {u, v} into the graph if it does not exist
yet. Otherwise do nothing.

(vii) Input: A vertex v ∈ V . Delete v and all incident edges from the graph.

For the last two queries, describe your algorithm.

Exercise 10.4 Maze solver.

You are given a maze that is described by a n × n grid of blocked and unblocked cells (see Figure 1).
�ere is one start cell marked with ’S’ and one target cell marked with ’T’. Starting from the start cell
your algorithm may traverse the maze by moving from unblocked �elds to adjacent unblocked �elds.
�e goal of this exercise is to devise an algorithm that given a maze returns the best solution (traversal
from ’S’ to ’T’) of the maze. �e best solution is the one that requires the least moves between adjacent
�elds.

Hint: You may assume that there always exists at least one unblocked path from ’S’ to ’T’ in a maze.

3



s

Figure 1: An example of 7 × 7 maze in which purple �elds are blocked, white �elds can be traversed
(are unblocked). �e start �eld is marked with ’S’ and the target �eld with a ’T’.

a) Model the problem as a graph problem. Describe the set of vertices V and the set of edges E in
words. Reformulate the problem description as a graph problem on the resulting graph.

b) Choose a data structure to represent your maze-graphs and use an algorithm discussed in the lecture
to solve the problem.

Hint: If there are multiple solutions of the same quality, return any one of them.

c) Determine the running time and memory requirements of your algorithm in terms of n in Θ nota-
tion.

Exercise 10.5 Driving on highways (1 point).

In order to encourage the use of train for long-distance traveling, the Swiss government has decided
to make all the m highways between the n major cities of Switzerland one-way only. In other words,
for any two of these major cities C1 and C2, if there is a highway connecting them it is either from C1

to C2 or from C2 to C1, but not both. �e government claims that it is however still possible to drive
from any major city to any other major city using highways only, despite these one-way restrictions.

a) Model the problem as a graph problem. Describe the set of vertices V and the set of edges E in
words. Reformulate the problem description as a graph problem on the resulting graph.

b) Describe an algorithm that veri�es the correctness of the claim in time O(n + m).

Hint: You can make use of an algorithm from the lecture. However, you might need to modify the graph
described in part (a) and run the algorithm on some modi�ed graph.

4


