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Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus points.

�e following theorem is very useful for running time analysis of divide-and-conquer algorithms.

�eorem 1 (Master theorem). Let a, C > 0 and b � 0 be constants and T : N ! R+ a function such
that for all even n 2 N,

T (n)  aT (n/2) + Cn
b
. (1)

�en for all n = 2k, k 2 N,

• If b > log2 a, T (n)  O(nb).

• If b = log2 a, T (n)  O(nlog2 a · log n).

• If b < log2 a, T (n)  O(nlog2 a).

If the function T is increasing, then the condition n = 2k can be dropped. If (1) holds with “=”, then we
may replace O with ⇥ in the conclusion.

�is generalizes some results that you have already seen in this course. For example, the running time
of Karatsuba algorithm satis�es T (n)  3T (n/2) + 100n, so a = 3 and b = 1 < log2 3, hence
T (n)  O(nlog2 3). Another example is binary search: its running time satis�es T (n)  T (n/2)+100,
so a = 1 and b = 0 = log2 1, hence T (n)  O(log n).

Exercise 4.1 Applying Master theorem.

For this exercise, assume that n is a power of two (that is, n = 2k, where k 2 {0, 1, 2, 3, 4, . . .}).

a) Let T (1) = 1, T (n) = 4T (n/2)+100n for n > 1. Using Master theorem, show that T (n)  O(n2).

Solution: We can apply �eorem 1 with a = 4, b = 1 and C = 100. In this case, b < log2 a, and
therefore the by the Master theorem we have T (n)  O(nlog2 a) = O(n2).

b) Let T (1) = 5, T (n) = T (n/2) + 3
2n for n > 1. Using Master theorem, show that T (n)  O(n).



Solution: We can apply �eorem 1 with a = 1, b = 1 and C = 3
2 . In this case, b > log2 a, and

therefore the by the Master theorem we have T (n)  O(nb) = O(n).

c) Let T (1) = 4, T (n) = 4T (n/2) + 7
2n

2 for n > 1. Using Master theorem, show that T (n) 
O(n2 log n).

Solution: We can apply �eorem 1 with a = 4, b = 2 and C = 7
2 . In this case, b = log2 a, and

therefore the by the Master theorem we have T (n)  O(nlog2 a · log n) = O(n2 log n).

In the second exercise you will see some examples of recurrences that can be analyzed in O-Notation
using Master theorem. �ese three examples show that the bounds in Master theorem are tight.

Exercise 4.2 Solving Recurrences (1 point).

For this exercise, assume that n is a power of two (that is, n = 2k, where k 2 {0, 1, 2, 3, 4, . . .}).

a) Consider the following algorithm:

Algorithm 1 g(n)

if n > 1 then
for i = 1, 2 do

g(n/2)
g(n/2)
for k = 1, . . . , n do

f()

else
f()

�e number of calls of f is given by the recurrence relation T (1) = 1 and T (n) = 4T (n2 ) + 2n
for n � 2. Using mathematical induction show that the closed-form expression for T (n) is T (n) =
3n2 � 2n.

Hint: Use induction over k = log2 n.

Solution:

Base case. Let k = 0, n = 1. T (1) = 1 = 3 · 12 � 2 · 1.

Induction Hypothesis. We assume that for some k � 0 and n = 2k it holds that

T (n) = 3n2 � 2n.

Inductive step (k ! k + 1). We know that T (2n) = 4T (n) + 2 · 2n = 4T (n) + 4n. Using the
induction hypothesis for T (n), we have

T (2n) = 4 ·
�
3n2 � 2n

�
+ 4n = 12n2 � 4n = 3 · (2n)2 � 2 · (2n),

as desired.

b) Consider the following algorithm:
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Algorithm 2 g(n)

if n > 1 then
for i = 1, . . . , 3n/2 do

f()

g(n/2)
else

f()
f()
f()
f()
f()

Find the recurrence relation for the number of calls of f , the closed form expression for it, and using
mathematical induction prove that it has this closed-form expression.

Hint: �e closed-form expression should be of the form T (n) = a · n+ b for some real numbers a and
b.

Solution: �e number of calls of f is given by the recurrence relation T (1) = 5 and T (n) =
T (n2 ) +

3
2n for n � 2.

Since T (1) = 5 and T (2) = 8, we can conclude that a = 3 and b = 2. We will now show by
induction that T (n) = 3n+ 2.

Base case. Let k = 0, n = 1. T (1) = 5 = 3 · 1 + 2.

Induction Hypothesis. We assume that for some k � 0 and n = 2k it holds that

T (n) = 3n+ 2.

Inductive step (k ! k + 1). We know that T (2n) = T (n) + 3
2 · 2n = T (n) + 3n. Using the

induction hypothesis for T (n), we have

T (2n) = (3n+ 2) + 3n = 6n+ 2 = 3 · (2n) + 2,

as desired.

c) Consider the following algorithm:

Algorithm 3 g(n)

if n > 1 then
for i = 1, . . . , 4 do

g(n/2)

for i = 1, . . . , n/2 do
for j = 1, . . . , 7n do

f()

else
for i = 1, . . . , 4 do

f()
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Find the recurrence relation for the number of calls of f , the closed form expression for it, and using
mathematical induction prove that it has this closed-form expression.

Hint: �e closed-form expression should be of the form T (n) = a · n2 log2 n + b · n2 for some real
numbers a and b.

Solution: �e number of calls of f is given by the recurrence relation T (1) = 4 and T (n) =
4T (n2 ) +

7
2n

2 for n � 2.

Since T (1) = 4 and T (2) = 30, we can conclude that a = 7/2 and b = 4. We will now show by
induction that T (n) = 7

2n
2 log2 n+ 4n2.

Base case. Let k = 0, n = 1. T (1) = 4 = 7
2 · 0 + 4 · 12 = 7

2 · 12 · log2 1 + 4 · 12.

Induction Hypothesis. We assume that for some k � 0 and n = 2k it holds that

T (n) = 7
2n

2 log2 n+ 4n2
.

Inductive step (k ! k + 1). We know that T (2n) = 4T (n) + 7
2 · (2n)2 = 4T (n) + 14n2

. Using
the induction hypothesis for T (n), we get

T (2n) = 4
�
7
2n

2 log2 n+ 4n2
�
+ 14n2 = 16n2 + 14n2 log2 n+ 14n2

= 4 · (2n)2 + 14n2 (1 + log2 n) = 4 · (2n)2 + 7
2(2n)

2 log2(2n),

as desired.

�e following de�nitions are closely related toO-Notation and are also useful in running time analysis
of algorithms.

De�nition 1 (⌦-Notation). Let n0 2 N, N := {n0, n0 + 1, . . .} and let f : N ! R+. ⌦(f) is the set
of all functions g : N ! R+ such that f 2 O(g). One o�en writes g � ⌦(f) instead of g 2 ⌦(f).

De�nition 2 (⇥-Notation). Let n0 2 N, N := {n0, n0 + 1, . . .} and let f : N ! R+. ⇥(f) is the set
of all functions g : N ! R+ such that f 2 O(g) and g 2 O(f). One o�en writes g = ⇥(f) instead of
g 2 ⇥(f).

Exercise 4.3 Asymptotic notations.

a) Describe the (worst-case) running time of the following algorithms in ⇥-Notation.

1) Karatsuba algorithm. Solution: ⇥(nlog2(3))

2) Binary Search. Solution: ⇥(log2(n))

3) Bubble Sort. Solution: ⇥(n2)

b) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.
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claim true false

n
logn  O(

p
n) ⇤ ⇤

log(n!) � ⌦(n2) ⇤ ⇤

n
k � ⌦(kn), if 1 < k  O(1) ⇤ ⇤

log3 n
4 = ⇥(log7 n

8) ⇤ ⇤

claim true false

n
logn  O(

p
n) ⇤ ⇥

log n! � ⌦(n2) ⇤ ⇥

n
k � ⌦(kn) ⇤ ⇥

log3 n
4 = ⇥(log7 n

8) ⇥ ⇤

c) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn � ⌦(n1/2) ⇤ ⇤

log7(n
8) = ⇥(log3(n

p
n)) ⇤ ⇤

3n4 + n
2 + n � ⌦(n2) ⇤ ⇤

(⇤) n!  O(nn/2) ⇤ ⇤

claim true false

n
logn � ⌦(n1/2) ⇥ ⇤

log7(n
8) = ⇥(log3(n

p
n)) ⇤ ⇥

3n4 + n
2 + n � ⌦(n2) ⇥ ⇤

(⇤) n!  O(nn/2) ⇤ ⇥

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.
Solution: All claims except for the last one are easy to verify using either the theorem about the
limit of f(n)

g(n) or simply the de�nitions of O,⌦ and ⇥. �us, we only present the solution for the last
one.

Note that for all n � 1,

n! � 1 · 2 · · ·n � dn/10e · · ·n � dn/10e0.9n � (n/10)0.9n .

Let’s show that (n/10)0.9n grows asymptotically faster than n
n/2.

lim
n!1

n
n/2

(n/10)0.9n
= lim

n!1
100.9n · n�0.4n = lim

n!1
(109/4/n)0.4n = 0 .

Hence it is not true that (n/10)0.9n  O(nn/2) and so it is not true that n!  O(nn/2).

Exercise 4.4 Exchange sort (1 point).

Consider the following algorithm, which takes an unsorted arrayA = A[1, . . . , n] as input and returns
the array in ascending order:
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Algorithm 4 E�������S���(A)

for 1  i  n do
for i+ 1  j  n do

if A[j] < A[i] then
T  A[j]
A[j] A[i]
A[i] T

return A

a) Formulate an invariant INV(i) that holds at the end of the i-th iteration of the outer for-loop.

Solution: A�er i iterations of the for-loop, the i �rst entries of the array are the i smallest entries
of the input array A, sorted in ascending order.

b) Using the invariant from part (a), prove the correctness of the algorithm. Speci�cally, prove the
following three assertions:

(i) INV(1) holds.

(ii) If INV(i) holds, then INV(i+ 1) holds (for all 1  i < n).

(iii) INV(n) implies that E�������S���(A) correctly sorts the array A.

Solution:

(i) �e �rst inner for-loop compares the (current) �rst element of the array with all other
elements, and swaps them if the former is larger than the la�er. �erefore, a�er the 1st
iteration of the outer for-loop, the �rst element of the array is the smallest element of A,
which means that INV(1) holds.

(ii) Let 1  i < n. Assuming that INV(i) holds, we know that before the (i + 1)st iteration
of the outer for-loop, the i �rst entries of the array are the i smallest entries of the input
array A sorted in ascending order. During the (i + 1)st iteration, the smallest element
among the remaining part of the array (namely A[i + 1, . . . , n]) will be placed at the
(i+1)st position, so that now the the i+1 �rst entries of the array are the i+1 smallest
entries of the input array in ascending order. �erefore, INV(i+ 1) holds.

(iii) INV(n)means that the array contains the n smallest values ofA (i.e. all values ofA, since
A has length n) in increasing order. So the array a�er the n-th iteration, which is the
array returned by E�������S���(A), is indeed the sorted array.

Exercise 4.5 Searching in Nice Matrices (1 point).

Let A[1 . . . n][1 . . . n] be an n ⇥ n matrix. We say that the matrix A is nice if it satis�es the following
two properties:

• For every 1  i  n and every 1  j1 < j2  n, we have A[i][j1] < A[i][j2].

• For every 1  i1 < i2  n and every 1  j  n, we have A[i1][j] < A[i2][j].

We are given a value b 2 Z that is guaranteed to be present in a nice matrix A. We are asked to search
for indices i, j 2 {1, . . . , n} such that A[i][j] = b. A trivial solution would be to scan all the entries of
A until �nding b. �is would take O(n2) time. In this exercise, we would like to �nd be�er solutions.
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a) An algorithm that is be�er than the trivial solution is one that applies binary search on every row.
What is the runtime of this algorithm?

Solution: Since every binary search takes O(log n), and since we apply binary search on (at most)
n rows, the runtime of the algorithm is O(n log n).

Now we would like to �nd an algorithm that is even be�er than the one in a). Let 1  i1  i2 
n and 1  j1  j2  n and assume that we already know that b is present in the submatrix
A[i1 . . . i2][j1 . . . j2]. Notice that by comparing A[i2][j1] to b, we will end up with one of the following
three possibilities:

• A[i2][j1] = b, which means that we found b.

• A[i2][j1] < b, which means that b must be present in the submatrix A[i1 . . . i2][(j1 + 1) . . . j2].

• A[i2][j1] > b, which means that b must be present in the submatrix A[i1 . . . (i2 � 1)][j1 . . . j2].

b) Use the above observation to write the pseudocode of an algorithm that solves the search problem
in O(n) runtime.

Solution:

Algorithm 5 Searching in a Nice Matrix
procedure ������N���M�����(A, b)

i1  1
i2  n

j1  1
j2  n

while i1  i2 and j1  j2 do
if A[i2][j1] = b then

return (i2, j1)
else if A[i2][j1] < b then

j1  j1 + 1
else

i2  i2 � 1
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