
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 18 October 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 4 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

�e solutions for this sheet are submi�ed at the beginning of the exercise class on October 25th.

Exercises that are marked by ⇤ are challenge exercises. �ey do not count towards bonus points.

�e following theorem is very useful for running time analysis of divide-and-conquer algorithms.

�eorem 1 (Master theorem). Let a, C > 0 and b � 0 be constants and T : N ! R+ a function such
that for all even n 2 N,

T (n)  aT (n/2) + Cn
b
. (1)

�en for all n = 2k, k 2 N,

• If b > log2 a, T (n)  O(nb).

• If b = log2 a, T (n)  O(nlog2 a · log n).

• If b < log2 a, T (n)  O(nlog2 a).

If the function T is increasing, then the condition n = 2k can be dropped. If (1) holds with “=”, then we
may replace O with ⇥ in the conclusion.

�is generalizes some results that you have already seen in this course. For example, the running time
of Karatsuba algorithm satis�es T (n)  3T (n/2) + 100n, so a = 3 and b = 1 < log2 3, hence
T (n)  O(nlog2 3). Another example is binary search: its running time satis�es T (n)  T (n/2)+100,
so a = 1 and b = 0 = log2 1, hence T (n)  O(log n).

Exercise 4.1 Applying Master theorem.

For this exercise, assume that n is a power of two (that is, n = 2k, where k 2 {0, 1, 2, 3, 4, . . .}).

a) Let T (1) = 1, T (n) = 4T (n/2)+100n for n > 1. Using Master theorem, show that T (n)  O(n2).

Solution: We can apply �eorem 1 with a = 4, b = 1 and C = 100. In this case, b < log2 a, and
therefore the by the Master theorem we have T (n)  O(nlog2 a) = O(n2).

b) Let T (1) = 5, T (n) = T (n/2) + 3
2n for n > 1. Using Master theorem, show that T (n)  O(n).

Solution: We can apply �eorem 1 with a = 1, b = 1 and C = 3
2 . In this case, b > log2 a, and

therefore the by the Master theorem we have T (n)  O(nb) = O(n).

c) Let T (1) = 4, T (n) = 4T (n/2) + 7
2n

2 for n > 1. Using Master theorem, show that T (n) 
O(n2 log n).

Solution: We can apply �eorem 1 with a = 4, b = 2 and C = 7
2 . In this case, b = log2 a, and

therefore the by the Master theorem we have T (n)  O(nlog2 a · log n) = O(n2 log n).

In the second exercise you will see some examples of recurrences that can be analyzed in O-Notation
using Master theorem. �ese three examples show that the bounds in Master theorem are tight.

Exercise 4.2 Solving Recurrences (1 point).

For this exercise, assume that n is a power of two (that is, n = 2k, where k 2 {0, 1, 2, 3, 4, . . .}).

a) Consider the following algorithm:

Algorithm 1 g(n)

if n > 1 then
for i = 1, 2 do

g(n/2)
g(n/2)
for k = 1, . . . , n do

f()

else
f()

�e number of calls of f is given by the recurrence relation T (1) = 1 and T (n) = 4T (n2) + 2n
for n � 2. Using mathematical induction show that the closed-form expression for T (n) is T (n) =
3n2 � 2n.

Hint: Use induction over k = log2 n.

Solution:

Base case. Let k = 0, n = 1. T (1) = 1 = 3 · 12 � 2 · 1.

Induction Hypothesis. We assume that for some k � 0 and n = 2k it holds that

T (n) = 3n2 � 2n.

Inductive step (k ! k + 1). We know that T (2n) = 4T (n) + 2 · 2n = 4T (n) + 4n. Using the
induction hypothesis for T (n), we have

T (2n) = 4 ·
�
3n2 � 2n

�
+ 4n = 12n2 � 4n = 3 · (2n)2 � 2 · (2n),

as desired.

b) Consider the following algorithm:

2

Algorithm 2 g(n)

if n > 1 then
for i = 1, . . . , 3n/2 do

f()

g(n/2)
else

f()
f()
f()
f()
f()

Find the recurrence relation for the number of calls of f , the closed form expression for it, and using
mathematical induction prove that it has this closed-form expression.

Hint: �e closed-form expression should be of the form T (n) = a · n+ b for some real numbers a and
b.

Solution: �e number of calls of f is given by the recurrence relation T (1) = 5 and T (n) =
T (n2) +

3
2n for n � 2.

Since T (1) = 5 and T (2) = 8, we can conclude that a = 3 and b = 2. We will now show by
induction that T (n) = 3n+ 2.

Base case. Let k = 0, n = 1. T (1) = 5 = 3 · 1 + 2.

Induction Hypothesis. We assume that for some k � 0 and n = 2k it holds that

T (n) = 3n+ 2.

Inductive step (k ! k + 1). We know that T (2n) = T (n) + 3
2 · 2n = T (n) + 3n. Using the

induction hypothesis for T (n), we have

T (2n) = (3n+ 2) + 3n = 6n+ 2 = 3 · (2n) + 2,

as desired.

c) Consider the following algorithm:

Algorithm 3 g(n)

if n > 1 then
for i = 1, . . . , 4 do

g(n/2)

for i = 1, . . . , n/2 do
for j = 1, . . . , 7n do

f()

else
for i = 1, . . . , 4 do

f()

3

Find the recurrence relation for the number of calls of f , the closed form expression for it, and using
mathematical induction prove that it has this closed-form expression.

Hint: �e closed-form expression should be of the form T (n) = a · n2 log2 n + b · n2 for some real
numbers a and b.

Solution: �e number of calls of f is given by the recurrence relation T (1) = 4 and T (n) =
4T (n2) +

7
2n

2 for n � 2.

Since T (1) = 4 and T (2) = 30, we can conclude that a = 7/2 and b = 4. We will now show by
induction that T (n) = 7

2n
2 log2 n+ 4n2.

Base case. Let k = 0, n = 1. T (1) = 4 = 7
2 · 0 + 4 · 12 = 7

2 · 12 · log2 1 + 4 · 12.

Induction Hypothesis. We assume that for some k � 0 and n = 2k it holds that

T (n) = 7
2n

2 log2 n+ 4n2
.

Inductive step (k ! k + 1). We know that T (2n) = 4T (n) + 7
2 · (2n)2 = 4T (n) + 14n2

. Using
the induction hypothesis for T (n), we get

T (2n) = 4
�
7
2n

2 log2 n+ 4n2
�
+ 14n2 = 16n2 + 14n2 log2 n+ 14n2

= 4 · (2n)2 + 14n2 (1 + log2 n) = 4 · (2n)2 + 7
2(2n)

2 log2(2n),

as desired.

�e following de�nitions are closely related toO-Notation and are also useful in running time analysis
of algorithms.

De�nition 1 (⌦-Notation). Let n0 2 N, N := {n0, n0 + 1, . . .} and let f : N ! R+. ⌦(f) is the set
of all functions g : N ! R+ such that f 2 O(g). One o�en writes g � ⌦(f) instead of g 2 ⌦(f).

De�nition 2 (⇥-Notation). Let n0 2 N, N := {n0, n0 + 1, . . .} and let f : N ! R+. ⇥(f) is the set
of all functions g : N ! R+ such that f 2 O(g) and g 2 O(f). One o�en writes g = ⇥(f) instead of
g 2 ⇥(f).

Exercise 4.3 Asymptotic notations.

a) Describe the (worst-case) running time of the following algorithms in ⇥-Notation.

1) Karatsuba algorithm. Solution: ⇥(nlog2(3))

2) Binary Search. Solution: ⇥(log2(n))

3) Bubble Sort. Solution: ⇥(n2)

b) (�is subtask is from January 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

4

claim true false

n
logn  O(

p
n) ⇤ ⇤

log(n!) � ⌦(n2) ⇤ ⇤

n
k � ⌦(kn), if 1 < k  O(1) ⇤ ⇤

log3 n
4 = ⇥(log7 n

8) ⇤ ⇤

claim true false

n
logn  O(

p
n) ⇤ ⇥

log n! � ⌦(n2) ⇤ ⇥

n
k � ⌦(kn) ⇤ ⇥

log3 n
4 = ⇥(log7 n

8) ⇥ ⇤

c) (�is subtask is from August 2019 exam). For each of the following claims, state whether it is
true or false. You don’t need to justify your answers.

claim true false

n
logn � ⌦(n1/2) ⇤ ⇤

log7(n
8) = ⇥(log3(n

p
n)) ⇤ ⇤

3n4 + n
2 + n � ⌦(n2) ⇤ ⇤

(⇤) n!  O(nn/2) ⇤ ⇤

claim true false

n
logn � ⌦(n1/2) ⇥ ⇤

log7(n
8) = ⇥(log3(n

p
n)) ⇤ ⇥

3n4 + n
2 + n � ⌦(n2) ⇥ ⇤

(⇤) n!  O(nn/2) ⇤ ⇥

Note that the last claim is challenge. It was one of the hardest tasks of the exam. If you want a 6
grade, you should be able to solve such exercises.
Solution: All claims except for the last one are easy to verify using either the theorem about the
limit of f(n)

g(n) or simply the de�nitions of O,⌦ and ⇥. �us, we only present the solution for the last
one.

Note that for all n � 1,

n! � 1 · 2 · · ·n � dn/10e · · ·n � dn/10e0.9n � (n/10)0.9n .

Let’s show that (n/10)0.9n grows asymptotically faster than n
n/2.

lim
n!1

n
n/2

(n/10)0.9n
= lim

n!1
100.9n · n�0.4n = lim

n!1
(109/4/n)0.4n = 0 .

Hence it is not true that (n/10)0.9n  O(nn/2) and so it is not true that n!  O(nn/2).

Exercise 4.4 Exchange sort (1 point).

Consider the following algorithm, which takes an unsorted arrayA = A[1, . . . , n] as input and returns
the array in ascending order:

5

Algorithm 4 E�������S���(A)

for 1  i  n do
for i+ 1  j  n do

if A[j] < A[i] then
T A[j]
A[j] A[i]
A[i] T

return A

a) Formulate an invariant INV(i) that holds at the end of the i-th iteration of the outer for-loop.

Solution: A�er i iterations of the for-loop, the i �rst entries of the array are the i smallest entries
of the input array A, sorted in ascending order.

b) Using the invariant from part (a), prove the correctness of the algorithm. Speci�cally, prove the
following three assertions:

(i) INV(1) holds.

(ii) If INV(i) holds, then INV(i+ 1) holds (for all 1  i < n).

(iii) INV(n) implies that E�������S���(A) correctly sorts the array A.

Solution:

(i) �e �rst inner for-loop compares the (current) �rst element of the array with all other
elements, and swaps them if the former is larger than the la�er. �erefore, a�er the 1st
iteration of the outer for-loop, the �rst element of the array is the smallest element of A,
which means that INV(1) holds.

(ii) Let 1  i < n. Assuming that INV(i) holds, we know that before the (i + 1)st iteration
of the outer for-loop, the i �rst entries of the array are the i smallest entries of the input
array A sorted in ascending order. During the (i + 1)st iteration, the smallest element
among the remaining part of the array (namely A[i + 1, . . . , n]) will be placed at the
(i+1)st position, so that now the the i+1 �rst entries of the array are the i+1 smallest
entries of the input array in ascending order. �erefore, INV(i+ 1) holds.

(iii) INV(n)means that the array contains the n smallest values ofA (i.e. all values ofA, since
A has length n) in increasing order. So the array a�er the n-th iteration, which is the
array returned by E�������S���(A), is indeed the sorted array.

Exercise 4.5 Searching in Nice Matrices (1 point).

Let A[1 . . . n][1 . . . n] be an n ⇥ n matrix. We say that the matrix A is nice if it satis�es the following
two properties:

• For every 1  i  n and every 1  j1 < j2  n, we have A[i][j1] < A[i][j2].

• For every 1  i1 < i2  n and every 1  j  n, we have A[i1][j] < A[i2][j].

We are given a value b 2 Z that is guaranteed to be present in a nice matrix A. We are asked to search
for indices i, j 2 {1, . . . , n} such that A[i][j] = b. A trivial solution would be to scan all the entries of
A until �nding b. �is would take O(n2) time. In this exercise, we would like to �nd be�er solutions.

6

a) An algorithm that is be�er than the trivial solution is one that applies binary search on every row.
What is the runtime of this algorithm?

Solution: Since every binary search takes O(log n), and since we apply binary search on (at most)
n rows, the runtime of the algorithm is O(n log n).

Now we would like to �nd an algorithm that is even be�er than the one in a). Let 1  i1  i2 
n and 1  j1  j2  n and assume that we already know that b is present in the submatrix
A[i1 . . . i2][j1 . . . j2]. Notice that by comparing A[i2][j1] to b, we will end up with one of the following
three possibilities:

• A[i2][j1] = b, which means that we found b.

• A[i2][j1] < b, which means that b must be present in the submatrix A[i1 . . . i2][(j1 + 1) . . . j2].

• A[i2][j1] > b, which means that b must be present in the submatrix A[i1 . . . (i2 � 1)][j1 . . . j2].

b) Use the above observation to write the pseudocode of an algorithm that solves the search problem
in O(n) runtime.

Solution:

Algorithm 5 Searching in a Nice Matrix
procedure ������N���M�����(A, b)

i1 1
i2 n

j1 1
j2 n

while i1  i2 and j1  j2 do
if A[i2][j1] = b then

return (i2, j1)
else if A[i2][j1] < b then

j1 j1 + 1
else

i2 i2 � 1

7

