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Exercise 8.1 Party & Beer & Party & Beer (1 point).

For your birthday, you organize a party and invite some friends over at your place. Some of your friends
bring their partners, and it turns out that in the end everybody (including yourself) knows exactly 7
other people at the party (note that the relation of knowing someone is commutative, i.e. if you know
someone then this person also knows you and vice versa). Show that there must be an even number of
people at your party.

Solution: Let n denote the number of people at your party. We can model the situation by a graph
G = (V,E), where the verticesV are the peoplewho came to your party, and two vertices are connected
by an edge whenever they know each other. Since everybody knows exactly 7 other people at the
party, we have deg(v) = 7 for all vertices v ∈ V . �erefore,

∑
v∈V deg(v) = 7n since there are

n vertices. On the other hand, by the Handshaking lemma (Handschlaglemma) we also know that∑
v∈V deg(v) = 2|E|, and in particular the sum of the degrees must be an even number. In other

words, 7n is an even number, which implies that n must be even as well.

Exercise 8.2 Domino.

a) A domino set consists of all possible
(
6
2

)
+ 6 = 21 di�erent tiles of the form [x|y], where x and y

are numbers from {1, 2, 3, 4, 5, 6}. �e tiles are symmetric, so [x|y] and [y|x] is the same tile and
appears only once.

Show that it is impossible to form a line of all 21 tiles such that the adjacent numbers of any conse-
cutive tiles coincide.

b) What happens if we replace 6 by an arbitrary n ≥ 2? For which n is it possible to line up all
(
n
2

)
+n

di�erent tiles along a line?



Solution:We directly solve the general problem.

First we note that we may neglect tiles of the form [x|x]. If we have a line without them, then we can
easily insert them to any place with an x. Conversely, if we have a line with them then we can just
remove them. �us the problem with and without these tiles are equivalent.

Consider the following graphGwith n vertices, labelled with {1, . . . , n}. We represent the domino tile
[x|y] by an edge between vertices x and y. �en the resulting graph G is a complete graph Kn, i.e.,
the graph where every pair of vertices is connected by an edge. A line of domino tiles corresponds to
a walk in this graph that uses every edge at most once, and vice versa. A complete line (of all tiles)
corresponds to an Eulerian walk in G. �us we need to decide whether G = Kn has an Euler walk or
not.

Kn is obviously connected. If n is odd then all vertices have even degree n − 1, and thus the graph is
Eulerian. On the other hand, if n is even then all vertices have odd degree n− 1. If n ≥ 4 is even, then
there are more than 3 vertices of odd degree, and therefore Kn does not have an Euler walk. Finally,
for n = 2, the graphKn is just an edge and has an Euler walk. Summarizing, there exists an Euler walk
if n = 2 or n is odd, and there is no Euler walk in all other cases. Hence, it is possible to line up the
domino tiles if n = 2 or n is odd, and it is impossible otherwise.

Exercise 8.3 Graph connectivity.

In this exercise, you will need to prove or �nd counterexamples to some statements about the connec-
tivity of graphs. We �rst need to introduce/recall a few de�nitions.

De�nition 1. A cycle is a sequence of vertices v1, . . . , vk, vk+1 with k ≥ 3 such that all v1, . . . , vk are
distinct, v1 = vk+1 and such that any two consecutive vertices are adjacent. We say that such a cycle
has length k.

De�nition 2. A graph is connected if there is a walk between every pair of vertices. It is called dis-
connected otherwise.

De�nition 3. Avertex v in a connected graph is called a cut vertex (or articulation point) if the subgraph
obtained by removing v (and all its incident edges) is disconnected.

De�nition 4. An edge e in a connected graph is called a cut edge (or bridge) if the subgraph obtained
by removing e (but keeping all the vertices) is disconnected.

In the following, we always assume that the original graph is connected. Prove or �nd a counterexample
to the following statements:

a) If a vertex v is part of a cycle, then it is not a cut vertex.

Solution:

�e following graph is a counterexample:

v

u

w

Indeed, v is clearly part of a cycle (the triangle uvw for example), but removing v yields the following
graph:
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u

w

�e above graph is disconnected. Hence, v is also a cut vertex.

b) If a vertex v is not a cut vertex, then v must be part of a cycle.

Solution:

�e following graph is a counterexample:

v

Indeed, v is not part of a cycle (remember that the vertices forming a cycle must be disjoint). How-
ever, removing v yields the following connected graph:

Hence, v is also not a cut vertex.
Remark. �e following statement is true: If a vertex of degree at least 2 is not a cut vertex, then
it must lie on a cycle. (Proof: Consider two neighbours u1, u2 of that vertex v. Since v is not a cut
vertex, a�er removing v there is still a path from u1 to u2. Together with the edges {u2, v} and
{v, u1}, this forms a cycle that contains v.)

c) If an edge e is part of a cycle (i.e. e connects two consecutive vertices in a cycle), then it is not a cut
edge.

Solution:

�is statement is correct, and we can prove it as follows. Let G be a connected graph and let e =
{v1, v2} be an edge of G that is part of a cycle v1 . . . vk for some k ≥ 3. To show that e is not a cut
edge, we will show that any two vertices u and w ofG can be joined by a walk that does not use the
edge e. So consider any two vertices u andw. SinceG is connected, there is a walk uu1 . . . unw from
u to w in G. If the walk doesn’t use the edge e, then we are already done. If the walk does use edge
e, this means that the vertices v1 and v2 must appear consecutively (at least once) in uu1 . . . unw.
We replace every appearance of v1v2 in the walk by the path v1vkvk−1 . . . v2, and every apperance
of v2v1 by the same path in the other direction v2v3 . . . vkv1. �is yields a walk from u to w that
does not use the edge e and concludes the proof.

d) If an edge e is not a cut edge, then e must be part of a cycle.

Solution:

�is statement is correct, and we can prove it as follows. Let G be a connected graph and let e =
{v1, v2} be an edge ofG that is not a cut edge.�en any pair of vertices inG can be joined by a walk
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that doesn’t use the edge e. In particular, there is a walk from v1 to v2 that doesn’t use e. Moreover,
we can turn this walk into a path. Indeed, for any vertex u that appears more than once in the walk,
we just remove the whole walk between its �rst appearance and its last appearance in the walk.
Doing this sequentially along the walk, we obtain a path v1, u1, . . . , uk, v2 from v1 to v2 that does
not use e. In particular, this path must contain at least 3 vertices (the only way to have a path from
v1 to v2 using 2 vertices is by using the edge e). We can then close this path with the edge e to form
a cycle v1, u1, . . . , uk, v2, v1, and hence e is part of a cycle.

e) If u and v are two adjacent cut vertices, then the edge e = {u, v} is a cut edge.

Solution:

�e following graph is a counterexample:

u v
e

Indeed, removing u yields

v

while removing v yields

u

and both of these graphs are disconnected, which means that u and v are cut vertices. However,
removing the edge e = {u, v} yields the following connected graph:

u v

Hence, e is not a cut edge.

f) If e = {u, v} is a cut edge, then u and v are cut vertices. What if we add the condition that u and v
have degree at least 2 ?

Solution:

�e following graph is a counterexample:

u ve

Indeed, removing e yields the following graph:

u v
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�e above graph is disconnected, so e is a cut edge. However, removing v yields the following
connected graph:

u

Hence, v is not a cut vertex.

If we add the condition that u and v have degree at least 2, then the statement is actually correct. We
will only show that u is a cut vertex, since the proof that v is also a cut vertex is exactly the same
with the two vertices exchanged.

Since deg(u) ≥ 2, u must have a neighbor u′ 6= v in the original graph G. We claim that a�er
removing u and all its incident edges, there is no walk from u′ to v in the obtained subgraph G′,
which means that it is disconnected and thus u is indeed a cut vertex.

Suppose by contradiction that there is a walk from u′ to v in G′. Using the same trick as in part d),
we can turn this walk into a path π from u′ to v. Since u′ 6= v, this path must use at least one edge.
Since every edge incident to u in G was removed to create G′, π does not use any edge incident to
u, and in particular it does not use the edge e nor the edge uu′. But then we obtain a cycle in G by
concatenating the path π with the edge e and then uu′ (note that this cycle indeed contains at least
3 edges, and hence 3 vertices). So e is part of a cycle inG, and by part c) it therefore cannot be a cut
edge. �is is the desired contradiction.

De�nition 5. We say that a graph G is Eulerian if it contains an Eulerian circuit (Eulerzyklus).
De�nition 6. A graph G = (V,E) is bipartite if it is possible to partition the vertices in two sets V1
and V2 (i.e. V1 ∩V2 = ∅ and V1 ∪V2 = V ) such that every edge {u, v} ∈ E has one endpoint in V1 and
the other in V2.
�eorem 1. A graph is bipartite if and only if it does not contain any cycle of odd length.

Exercise 8.4∗ Equivalent characterization of bipartite graphs.

Prove �eorem 1 above.

Solution:

First suppose thatG = (V,E) is a bipartite graph and let V1, V2 ⊆ V be subsets of vertices that satisfy
the conditions of De�nition 6. Let v1, . . . , vk, vk+1 be a cycle of G of length k. Since V = V1 ∪ V2,
v1 must be contained either in V1 or in V2. Without loss of generality, we can assume that v1 ∈ V1.
�en since G has (V1, V2) as a bipartition and {v1, v2} is an edge, we must have v2 ∈ V2. By the same
reasoning, we actually have v2i+1 ∈ V1 and v2i ∈ V2 for all i. But since vk+1 = v1 ∈ V1, this means
that k + 1 must be of the form 2i+ 1 for some i, which means that k = 2i is even.

Conversely, suppose that G = (V,E) is a graph which does not contain any cycle of odd length.
Note �rst that if G is not connected, it su�ces to �nd a bipartition (V1(H), V2(H)) of each connected
component H of G, since this yields a bipartition of G given by

V1 =
⋃
H

V1(H) and V2 =
⋃
H

V2(H),

where the unions are taken over all connected components H of G. �erefore, we can assume that G
is connected.
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For two vertices u, v ∈ V , we de�ne their distance dG(u, v) as the length of (i.e the number of edges
in) one of the shortest path connecting u and v. For example, dG(u, u) = 0, and dG(u, v) = 1 if and
only if u and v are adjacent. Note that since G is connected, dG(u, v) is �nite for all u, v ∈ V . Let v be
an arbitrary vertex in G. We will show that the sets

V1 := {u ∈ V : dG(u, v) is even},
V2 := {u ∈ V : dG(u, v) is odd},

form a bipartition ofG. Indeed, V1∪V2 = V since dG(u, v) is �nite for all u ∈ V . Moreover, V1∩V2 = ∅
because a distance dG(u, v) cannot be even and odd at the same time. It remains to show the hardest
part, namely that there are no edges connecting two vertices in V1 or two vertices in V2. �e proof
is basically the same for both cases, so we just show that there cannot be an edge {x, y} ∈ E with
x, y ∈ V1.

Suppose by contradiction that there exists x, y ∈ V1 connected by an edge e ∈ E. Let P be one of the
shortest path from x to v, andQ one of the shortest path from y to v. Let us denote by `(S) the length of
a path S, i.e. the number of edges in S, so that `(P ) = dG(x, v) and `(Q) = dG(y, v) by de�nition. �e
paths P and Q have at least one vertex in common, namely v. So let v1 be the �rst common vertex of
P andQ when taking the paths from their di�erent endpoints x and y to v. Clearly, since P andQ are
shortest paths, their subpaths bewteen v1 and v must be shortest paths between v1 and v. In particular
they are of the same length dG(v1, v). Let P1 be the subpath of P from x to v1, and Q1 the subpath of
Q from y to v1. Since x, y ∈ V1, we have that `(P ) = dG(x, v) and `(Q) = dG(y, v) are both even.
�erefore, `(P1) = `(P ) − dG(v1, v) and `(Q1) = `(Q) − dG(v1, v) have the same parity. Consider
the cycle C created by taking P1 from x to v1, thenQ1 ”in reverse direction” from v1 to y and then the
edge e from y to x. �e length of C is given by `(P1) + `(Q1) + 1, which is odd since `(P1) and `(Q1)
have the same parity. �is is a contradiction to the assumption that G does not contain any cycle of
odd length. Hence no two vertices of V1 are adjacent, which concludes the proof.

Exercise 8.5 Bipartite graphs, Eulerian graphs and painting rooms (2 points).

In this exercise, you can use �eorem 1 above (even if you haven’t solved exercise 8.4).

a) Prove or disprove the following statements:

(i) Every graph G that is bipartite and Eulerian must have an even number of edges.

Solution: �is statement is correct, and we can prove it as follows. Let G = (V,E) be a
bipartite Eulerian graph and let V1, V2 be a bipartition ofG, i.e. a partition of the vertices of G
that satis�es De�nition 6. Moreover, let us number the edges of the graph asE = {e1, . . . , em}
in such a way that e1e2 . . . em−1em is an Eulerian circuit of G. Our goal is to prove that m is
even.

Since e1e2 . . . em−1em is an Eulerian circuit, and in particular a circuit, we know that the star-
ting vertex and ending vertex coincide, so let v0 ∈ V be this vertex. Since V1 and V2 form a
partition of V , v0 must be conatined in one of these two sets. Without loss of generality, let us
assume that v0 ∈ V1. If we follow the Eulerian cycle, everytimne we go through an edge we
will change from the set V1 to the set V2 or vice-versa, because every edge has one endpoint
in V1 and the other in V2 by de�nition. In other words, a�er going through the edge e1 we end
up at a vertex v1 ∈ V2, and then using vertex e2 we arrive at a vertex v2 ∈ V1, and so on. In
particular, a�er following an odd number of edges from the Eulerian cycle, we stand at some
vertex u ∈ V2, and this vertex cannot be v0 since v0 ∈ V1. But the last edge em brings us to
v0 ∈ V1, som cannot be an odd number, which proves thatm is even.
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(ii) Every Eulerian graph G that has an even number of vertices must also have an even number
of edges.

Solution:

�e following graph is a counterexample:

Indeed, the graph is clearly connected and one can easily check that the degree of each vertex
is even, and hence the graph is Eulerian. However, it has an even number of vertices (6) but an
odd number of edges (9).

b) You recently moved in with your best friend (see �oor plan below) and you would like to repaint
the room walls. Every room should be painted either in red or in purple (as these are your favorite
colors), and you also would like that whenever you walk from a room to another room through a
door, the color changes. Is that possible?

Note that there are 7 rooms (i.e. the Hallway, the Bathroom and the Kitchen are counted as rooms).

Solution:
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We �rst model the above �oor plan as the following graph, where the vertices represent the di�erent
rooms of the �at, and two vertices are conncted with an edge whenever there is a door between the
two corresponding rooms.

Best friend’s room

Your room

Bathroom Living room Hallway

Bar

Kitchen

Note that it is possible to paint the room in the prescribed way if and only if the above graph is
bipartite. Indeed, if such a painting exists, then assigning the rooms painted in red to V1 and the
other rooms (painted in purple) to V2 gives a bipartition of the graph, because every edge will have
an endpoint in V1 and the other in V2 as otherwise there would be two ajacent room painted in the
same color. Conversely, given a bipartition of the above graph, painting all rooms in V1 in red and
all rooms in V2 in purple will satsisfy the condition.

By�eorem 1, the above graph is not bipartite, because it contains a cycle of odd length (for example
the cycle Your room, Kitchen, Hallway, Bar, Best friend’s room, Your room, of length 5). �erefore, it
is not possible to paint the rooms in the prescribed way.
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