
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 29. November 2021
Markus Püschel, David Steurer
Gleb Novikov, Tommaso d’Orsi, Ulysse Schaller, Rajai Nasser

Algorithms & Data Structures Exercise sheet 10 HS 21

Exercise Class (Room & TA):
Submi�ed by:
Peer Feedback by:
Points:

Submission: On Monday, 6 December 2021, hand in your solution to your TA before the exercise class
starts. Exercises that are marked by ∗ are challenge exercises. �ey do not count towards bonus points.

Exercise 10.1 Breadth-First Search (1 point).

Execute a breadth-�rst search (Breitensuche) on the following (directed) graph starting from vertex A.
Use the algorithm presented in the lecture.

When processing the neighbors of a vertex, process them in alphabetical order.

A B

D E F

CG H

a) Provide the BFS order of visit of the nodes.

Solution:�e BFS order of visit is: A, B, D, E, F, C, G, H

b) Provide the enter and leave time of each node.

Solution:

• A: enter=0, leave=1

• B: enter=2, leave=4

• D: enter=3, leave=7

• E: enter=5, leave=9

• F: enter=6, leave=10

• C: enter=8, leave=11

• G: enter=12, leave=14

• H: enter=13, leave=15

c) Indicate the shortest-path-tree that is obtained by BFS.

Solution:�e BFS shortest-path-tree is indicated in red.

d) Determine the distance from A to every node in the graph.

Solution:

• �e distance from A to A is 0.

• �e distance from A to B is 1.

• �e distance from A to D is 1.

• �e distance from A to E is 2.

• �e distance from A to F is 2.

• �e distance from A to C is 2.

• �e distance from A to G is 3.

• �e distance from A to H is 3.

Exercise 10.2 Depth-First Search (1 point).

Execute a depth-�rst search (Tiefensuche) on the following graph starting from vertex A. Use the algo-
rithm presented in the lecture. When processing the neighbors of a vertex, process them in alphabetical
order.

A B

D E F

CG H

T

F T F
F

T

T T

F
T

B T

C

a) Mark the edges that belong to the depth-�rst tree (Tiefensuchbaum) with a “T” (for tree edge).

b) For each vertex, give its pre- and post-number.

Solution: A (1,16), B (2,15), D (3,14), C (4,13), E (5,8), F (6,7), G (9,10), H(11,12)

2

c) Give the vertex ordering that results from sorting the vertices by pre-number. Give the vertex orde-
ring that results from sorting the vertices by post-number.

Solution: Pre-ordering: A, B, D, C, E, F, G, H. Post-ordering: F, E, G, H, C, D, B, A.

d) Mark every forward edge (Vorwärtskante) with an “F”, every backward edge (Rückwärtskante) with
an “B”, and every cross edge (�erkante) with a “C”.

e) Does the above graph have a topological ordering? How can we use the above execution of depth-
�rst search to �nd a directed cycle?

Solution: �e decreasing order of the post-numbers gives a topological ordering, whenever the
graph is acyclic. �is is the case if and only if there are no back edges. If there is a back edge, then
together with the tree edges between its end points it forms a directed cycle. In our graph, the only
back edge is E→ D, and the tree edges from D to E are D→ C and C→ E. Together they form the
directed cycle (D→ C→ E→ D).

f) Draw a scale from 1 to 16, and mark for every vertex v the interval Iv from pre-number to post-
number of v. What does it mean if Iu ⊂ Iv for two di�erent vertices u and v?

Solution:

1 16A

2 15B

3 14D

4 13C

5 8

E

6 7

F 9 10

G

11 12

H

If Iu ⊂ Iv for two di�erent vertices u and v, then u is visited during the call of DFS-Visit(v).

g) Consider the graph above with the edge from E to D removed. How does the execution of depth-�rst
search change? Which topological sorting does the depth-�rst search give? If you sort the vertices
by pre-number, does this give a topological sorting?

Solution:�e execution of depth-�rst search doesn’t change. �e topological sorting is: A, B, D, C,
H, G, E, F. �e pre-ordering is A, B, D, C, E, F, G, H.; it does not give a topological ordering, since
there is an edge (H, F) in the graph.

Exercise 10.3 Data structures for graphs.

Consider three types of data structures for storing a graph G with n vertices andm edges:

a) Adjacency matrix.

b) Adjacency lists:

3

1

1

1

1

1

2

2

2

2

3

3

4

4

4

45

5

5

6

6

c) Adjacency lists, and additionally we store the degree of each node, and there are pointers between
the two occurences of each edge. (An edge appears in the adjacency list of each endpoint).
1

1

1

1

1

2

2

2

2

3

3

4

5

5

5

4

4

4

6

6

deg: 4

deg: 3

deg: 1

deg: 3

deg: 2

deg: 1

For each of the above data structures, what is the required memory (in Θ-Notation)?

Solution: Θ(n2) for adjacency matrix, Θ(n+m) for adjacency list and improved adjacency list.

Which runtime (worst case, in Θ-Notation) do we have for the following queries? Give your answer
depending on n,m, and/or deg(u) and deg(v) (if applicable).

(i) Input: A vertex v ∈ V . Find deg(v).

Solution: Θ(n) in adjacency matrix, Θ(1+deg(v)) in adjacency list, Θ(1) in improved adjacency
list.

(ii) Input: A vertex v ∈ V . Find a neighbour of v (if a neighbour exists).

Solution: Θ(n) in adjacency matrix, Θ(1) in adjacency list and in improved adjacency list.

(iii) Input: Two vertices u, v ∈ V . Decide whether u and v are adjacent.

Solution: Θ(1) in adjacency matrix, Θ(1 + min{deg(v),deg(u)}) in adjacency list and in impro-
ved adjacency list.

(iv) Input: Two adjacent vertices u, v ∈ V . Delete the edge e = {u, v} from the graph.

Solution:Θ(1) in adjacencymatrix,Θ(deg(v)+deg(u)) in adjacency list andΘ(min{deg(v), deg(u)})
in improved adjacency list.

(v) Input: A vertex u ∈ V . Find a neighbor v ∈ V of u and delete the edge {u, v} from the graph.
Solution: Θ(n) in the adjacency matrix (Θ(n) for �nding a neighbor and Θ(1) for the edge dele-
tion).

Θ(1+ max
w:{u,w}∈E

deg(w)) for the adjacency list (Θ(1) for �nding a neighbor andΘ(max
w:{u,w}∈E

deg(w))

for the edge deletion).

Θ(1) for the improved adjacency list (Θ(1) for �nding a neighbor and Θ(1) for the edge deletion).

4

(vi) Input: Two vertices u, v ∈ V with u 6= v. Insert an edge {u, v} into the graph if it does not exist
yet. Otherwise do nothing.

Solution: Θ(1) in adjacency matrix, Θ(1 + min{deg(v),deg(u)}) in adjacency list and in impro-
ved adjacency list.

(vii) Input: A vertex v ∈ V . Delete v and all incident edges from the graph.

Solution:Θ(n2) in adjacency matrix, Θ(n+m) in adjacency list andΘ(n) in improved adjacency
list.

For the last two queries, describe your algorithm.

Solution: �ery (vi): We check whether the edge {u, v} does not exist. In adjacency matrix this in-
formation is directly stored in the u-v-entry. For adjacency lists we iterate over the neighbours of u
and the neighbours of v in parallel and stop either when one of the lists is traversed or when we �nd v
among the neighbours of u or when we �nd u among the neighbours of v. If we didn’t �nd this edge,
we add it: in the adjacency matrix we just �ll two entries with ones, in the adjacency lists we add nodes
to two lists that correspond to u and v. In the improved adjacency lists, we also need to set pointers
between those two nodes, and we need to increase the degree for u and v by one.

�ery (vii): In the adjacency matrix we copy the complete matrix, but leave out the row and column
that correspond to v. �is takes time Θ(n2). �ere is an alternative solution if we are allowed to rename
vertices: In this case we can just rename the vertex n as v, and copy the n-th row and column into the
v-th row and column. �en the (n− 1)× (n− 1) submatrix of the �rst n− 1 rows and columns will be
the new adjacancy matrix. �en the runtime is Θ(n). Whether it is allowed to rename vertices depends
on the context. For example, this is not possible if other programs use the same graph.

In the adjacency lists we remove v from every list of neighbours of every vertex (it takes timeΘ(n+m))
and then we remove a list that corresponds to v from the array of lists (it takes time Θ(n)). In the im-
proved adjacency lists we iterate over the neighbours of v and for every neighbour uwe remove v from
the list of neighbours of u (notice that for each u we can do it in Θ(1) since we have a pointer between
two occurences of {u, v}) and decrease deg(u) by one. �en we remove the list that corresponds to v
from the array of lists (it takes time Θ(n)).

Exercise 10.4 Maze solver.

You are given a maze that is described by a n × n grid of blocked and unblocked cells (see Figure 1).
�ere is one start cell marked with ’S’ and one target cell marked with ’T’. Starting from the start cell
your algorithm may traverse the maze by moving from unblocked �elds to adjacent unblocked �elds.
�e goal of this exercise is to devise an algorithm that given a maze returns the best solution (traversal
from ’S’ to ’T’) of the maze. �e best solution is the one that requires the least moves between adjacent
�elds.

Hint: You may assume that there always exists at least one unblocked path from ’S’ to ’T’ in a maze.

5

s

Figure 1: An example of 7 × 7 maze in which purple �elds are blocked, white �elds can be traversed
(are unblocked). �e start �eld is marked with ’S’ and the target �eld with a ’T’.

a) Model the problem as a graph problem. Describe the set of vertices V and the set of edges E in
words. Reformulate the problem description as a graph problem on the resulting graph.

Solution: V is the set of unblocked �elds, and there is an edge between vi and vj if and only if vi
and vj are adjacent unblocked �elds. �e corresponding graph problem is to �nd a shortest path
between vertices ‘S’ and ‘T’ in G = (V,E).

b) Choose a data structure to represent your maze-graphs and use an algorithm discussed in the lecture
to solve the problem.

Solution:�e data structure is adjacency list, the algorithm is BFS starting from ‘S’. Once we know
all the distances from ‘S’, we append vertices to a sequence starting from ‘T’ using the following
rule: if the last appended vertex is v, we append some neighbour u of v such that dG(‘S’, v) =
dG(‘S’, u) + 1. We stop a�er appending ‘S’. �en we return a reverse sequence.

Hint: If there are multiple solutions of the same quality, return any one of them.

c) Determine the running time and memory requirements of your algorithm in terms of n in Θ nota-
tion.

Solution: Adjacency list requires Θ(|V | + |E|) memory, where V is a number of vertices and |E|
is a number of edges in the graph. BFS requires Θ(|V | + |E|) time and appending procedure also
requires Θ(|V |+ |E|) time, so the total running time is Θ(|V |+ |E|). Since each vertex has degree
at most 4, |E| = O(|V |), so the running time and memory are Θ(|V |) which is Θ(n2) in the worst
case.

Exercise 10.5 Driving on highways (1 point).

In order to encourage the use of train for long-distance traveling, the Swiss government has decided
to make all the m highways between the n major cities of Switzerland one-way only. In other words,
for any two of these major cities C1 and C2, if there is a highway connecting them it is either from C1

to C2 or from C2 to C1, but not both. �e government claims that it is however still possible to drive
from any major city to any other major city using highways only, despite these one-way restrictions.

a) Model the problem as a graph problem. Describe the set of vertices V and the set of edges E in
words. Reformulate the problem description as a graph problem on the resulting graph.

6

Solution: V is the set of major cities in Switzerland (which is of size |V | = n), and there is a
directed edge from u ∈ V to v ∈ V if and only if there is a highway going from city u to city v.
�e corresponding graph problem is to determine whether for any two vertices u, v ∈ V , there is a
(directed) path from u to v in G = (V,E).

b) Describe an algorithm that veri�es the correctness of the claim in time O(n+m).

Hint: You can make use of an algorithm from the lecture. However, you might need to modify the graph
described in part (a) and run the algorithm on some modi�ed graph.

Solution:

�e algorithm is the following. Let v0 ∈ V be any vertex in the graph. We �rst run DFS starting
from vertex v0 on the graph G described in part (a), and denote by V0 the set of vertices that were
visited by the DFS. �en, we de�ne a new graph G′ = (V,E′) with the same vertices, and whose
edges are given by the reversed edges ofG, i.e. E′ = {(v, u) ∈ V 2 : (u, v) ∈ E}. We run DFS again
starting from vertex v0 on the graph G′, and denote by V ′0 the set of vertices that were visited by
the DFS. �e algorithm outputs that the claim is correct if V0 = V = V ′0 , and that the claim is false
otherwise. Note that the �rst DFS takes time O(|V |+ |E|), and the second one O(|V |+ |E′|), and
since |V | = n and |E′| = |E| = m the total runtime is indeed O(n+m).

For completeness, let us now explain why this is a correct algorithm (you did not have to do it since
we had not explicitly asked for it in the task). We have to show the equivalence of the following two
statements:

(1) For any two vertices u, v ∈ V , there is a (directed) path from u to v in G = (V,E).

(2) V0 = V and V ′0 = V .

(1) =⇒ (2):

Note that V0 is the set of vertices v for which there is a directed path from v0 to v inG. By (1), there
is a path from v0 to v for all vertices v ∈ V , and thus V0 = V . On the other hand, V ′0 is the set of all
vertices v for which there is a directed path from v to v0 in G. Indeed, if v ∈ V ′0 , this means that in
the graph G′ with reversed edges there is a path from v0 to v, which corresponds to a path from v
to v0 in the original graph G. Again by (1), we conclude that V ′0 = V .

(2) =⇒ (1):

Let u, v ∈ V . Since V ′0 = V and we have seen that V ′0 is the set of vertices from which we can reach
v0 in G, we know there is a directed path πu from u to v0 in G. Since V0 = V and V0 is the set
of vertices that we can reach from v0 in G, we know there is a directed path πv from v0 to v in G.
Concatenating the paths πu and πv , we obtain a directed path from u to v in G.

7

