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Remark. Let G = (V,E) be a weighted graph with nonnegative weights (w(e) ≥ 0 ∀e ∈ E) such
that all edge-weights are di�erent (∀e 6= e′ in E, w(e) 6= w(e′)). �en the minimum spanning tree of
G is unique.

You can use this fact without further justi�cation for solving this exercise sheet.

Exercise 12.1 MST practice (1 point).

Consider the following graph
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a) Compute the minimum spanning tree (MST) using Boruvka’s algorithm. For each step, provide the
set of edges that are added to the MST.

Solution: At the �rst step we add edges {a, c}, {b, e}, {c,d}, {d, f}. At the second step we add
{e, f}.



b) Provide the order in which Kruskal’s algorithm adds the edges to the MST.

Solution: {c,d}, {d, f}, {b, e}, {e, f}, {a, c}.

c) Provide the order in which Prim’s algorithm (starting at vertex d) adds the edges to the MST.

Solution: {c,d}, {d, f}, {e, f}, {b, e}, {a, c}.

Exercise 12.2 Minimum Spanning Tree and Shortest Paths (1 point).

LetG = (V,E) be a connected edge-weighted graphwhere all theweights are nonnegative and distinct.
Let T be a minimum spanning tree of G.

Let v ∈ V be some vertex and de�ne Tv to be the tree of shortest paths that is obtained by applying
Dijkstra’s algorithm on G starting from the source v.

Is it possible that T and Tv do not have any edge in common? If the answer is yes, provide an example
showing that it is possible. Otherwise, prove that it is impossible

Solution:�e trivial graph with one vertex and no edges has T and Tv with no edges, so formally they
do not have any edge in common.

However, if we consider only the case |E| > 0, then the answer is no: Since the edge-weights are
nonnegative and distinct, there is a unique minimum spanning tree T . �erefore, T is the same as the
tree that is obtained by applying Prim’s algorithm starting from v.

Consider the edge {v, u} that is incident to v and which has the minimum weight. �e edge {v, u} is
the �rst edge to be added to T in Prim’s algorithm. Similarly, (v, u) is a shortest path from v to u and
{v, u} is the �rst edge to be added to Tv is Dijkstra’s algorithm. We conclude that T and Tv share the
edge {v, u}.

Exercise 12.3 Constructing a Fiber Optic Network (1 point).

�e government of Atlantis put you in charge of installing a �ber optic network that connects all its n
cities. �ere are two technologies of �bre optic that you can use:

• Fibre 1.0: It is a good reliable technology that is relatively cheap. �ere is a list of pairs of cities
between which it is possible to install a direct Fibre 1.0 link. Furthermore, for each such pair,
there is a corresponding positive integer cost.

• Fibre 2.0: It is an emerging technology that it extremely good and can directly connect any two
cities. However, its cost is too high and the government cannot a�ord a single Fibre 2.0 link.

Note that all direct links are two-directional. �e installed network should connect all the cities of
Atlantis: Between any two cities, there should be a connected path of direct links in the network that
connects them.

A philanthropist volunteered to donate the cost of exactly k < n direct Fibre 2.0 links, and you can use
them to connect any k pairs of cities. Your goal is to minimize the cost that is paid by the government
for the Fibre 1.0 links that are needed to construct a connected network. Describe an algorithm that
�nds the network that costs the government the minimum amount of money.

Note that it is possible to construct a network connecting all the cities of Atlantis using only Fibre 1.0
links, but we would like to bene�t from the k Fibre 2.0 links that were donated by the philantropist in
order to minimize the cost that is paid by the government.
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Hint: Modify Kruskal’s algorithm.

Solution: Before stating the solution, it would be useful to introduce some terminology: An undirected
graph is said to be a forest if it does not contain any cycle. In other words, a graph is a forest if and only
if its connected components are trees. We say that it is an `-forest if it has ` connected components.
Note that a graph is a 1-forest if and only if it is a tree.

Note that the removal of k edges from a tree yields a (k+ 1)-forest. Conversely, if we have an `-forest,
we can convert it into a tree by adding ` − 1 edges connecting its connecting components without
creating cycles.

LetG = (V,E) be the undirected graphwhere the set of verticesV corresponds to the cities of Antlantis
and the set of edges E corresponds to the pairs of cities between which we can install direct Fibre 1.0
links. �e edges in E are weighted by the cost of installing direct Fibre 1.0 links.

Let T be the tree corresponding to the network to be installed. Let e1, . . . , ek be the k edges correspon-
ding to the Fibre 2.0 links that will be donated. Note that e1, . . . , ek may or may not be in E.

Let F = T \ {e1, . . . , ek} correspond to the Fibre 1.0 links for which the government has to pay. It is
easy to see that F is a spanning (k+ 1)-forest ofG: It is a subgraph ofG (with the same set of vertices)
which is also a (k + 1)-forest.

We can now see that the problem is equivalent to �nding a minimum spanning (k + 1)-forest of G,
i.e., one that has the minimum total weight. �is can be done using a slight modi�cation of Kruskal’s
algorithm. Let n = |V | be the number of cities. Instead of completing Kruskal’s procedure until adding
n − 1 edges, we stop a�er adding n − k − 1 edges from E. �e proof of correctness of this algorithm
is very similar to that of Kruskal’s algorithm for the minimum spanning tree problem.

Exercise 12.4 Ancient Kingdom of Macedon.

�e ancient Kingdom of Macedon had n cities andm roads connecting them, such that from one city,
you can reach all othern−1 cities. All roads were roman roads i.e. stone-paved roads that did not require
any maintenance and no two roads were of the same length. With the technological developments in
the Roman Kingdom, a new type of carriage was developed, called the Tesla Carriage, which was much
faster than all the alternatives in the Ancient Macedon Kingdom. However, the Tesla Carriage required
asphalt roads to operate, and such roads had to be maintained every year, or otherwise the asphalt
would wear o�, rendering the road unusable as if it was a roman road.

With the e�ort to modernize the kingdom, Phillip II promised the Ancient Macedonians that he will
provide them with asphalt roads by paving some of the existing roman roads, such that every two cities
can be reached through a Tesla Carriage. �e price to pave a roman road or maintain an asphalt road is
equal, and is proportional to the length of the road. To save money Phillip II decided to pave su�cient
roman roads to ful�ll his promise, while minimizing the overall yearly maintenance price.

Even in the �rst years, the new Tesla Carriages improved the lives of the average Ancient Macedonians,
but at the same time, they also provided means for robbers to commit crimes and escape to another
city. To resolve this, Phillip II decided to create checkpoints the second year, one at each asphalt road.
Each of the checkpoint will have a �xed cost for both building and maintenance.

Assuming a �xed price k for each checkpoint, does Phillip II have to consider paving new roman roads,
or he can maintain the same set of roads in order to make sure that the overall maintenance price of
the roads and the checkpoints is still minimal? Prove your reasoning, or provide a counter example.
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Note: For simplicity, assume that the roman roads were paved all at once, on the �rst day of the year,
and maintenance will be done the same day next year, again all at once. Also assume that checkpoints
can also be built at once for all roads, as well a they can be maintained all at once in a day.

Solution.

Let’s think of all cities in the Ancient Macedon Kingdom as vertices in a graphG and all roads as edges.
In order to minimize the overall maintenance price, Philip II must pave only roman roads that form
a minimum spanning tree T in G. As a result, we can rephrase the problem as the following graph
problem. Let T be a minimum spanning tree of a weighted graph G. Construct a new graph G′ by
increasing the weight of each edge inG by k. Do the edges of T form a minimum spanning tree ofG′?

In a graph with n vertices, every spanning tree has n−1 edges. �us the weight of every spanning tree
is increased by exactly (n− 1) · k. �erefore, the minimum spanning trees remains the same. In other
words, Phillip II does not have to consider paving new roman roads: keeping the current asphalt roads
and building a checkpoint on each of them still guarantees minimal maintenance cost.

Exercise 12.5∗ Spanning Forest with 2 components.

Let G = (V,E) be a connected edge-weighted graph in which all weights of the edges are di�erent
and positive. Consider the following two algorithms, which take G, the weights of all edges, and two
di�erent vertices u, v ∈ V as input.

Algorithm 1
Run Kruskal’s algorithm to get a minimum spanning tree T = (V,ET ).
Find the unique path π from u to v in T .
Find the edge e of maximal weight among edges in π.
Remove e from T to get a graph H = (V,ET \ {e}).
return H

Algorithm 2
M ← {u, v}
EM ← ∅
whileM 6= V do

∆M = {{w0, w1} ∈ E : w0 ∈M,w1 ∈ V \M}
Find the edge {w0, w1} ∈ ∆M of minimal weight.
EM ← EM ∪ {{w0, w1}}
M ←M ∪ {w1}

return H = (M,EM )

Prove that the two algorithms return the same graph.

Hint: Consider the graphG′ which is obtained fromG by adding an edge e0 of weight 0 between u and v (if
the edge {u, v} already exists, then simply decrease its weight to 0). Try to relate the two given algorithms
on G to algorithms that you know from the lecture on G′.

Solution.

Note that G′ is still a weighted graph with all edge-weights being di�erent (since we assume that
w(e) > 0 for all e ∈ E). Clearly the edges of G′ all have nonnegative weights, so by the remark at the
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beginning of the sheet we know that the MST ofG′ is unique. In order to prove that the two algorithms
return the same graph, we will show that they both yield the MST T ′ of G′ minus the edge e0 (note
that since e0 is the edge of minimal weight in G′, it is clear that it is part of T ′).

Algorithm 1:

We claim that Algorithm 1 yields the same graph as running Kruskal’s algorithm on G′, minus e0.
Since e0 has minimal weight in G′, the �rst step of Kruskal’s algorithm on G′ is to add e0 to T ′. It
remains to show that a�er this step, the only edge added to T in Algorithm 1 that is not added to T ′
is precisely e, and that every edge added to T ′ is also added to T . Let Tn denote the set of edges added
to T by Kruskal’s algorithm a�er n steps, and T ′n the set of edges added to T ′ by Kruskal’s algorithm
a�er n + 1 steps (i.e. a�er going through e0 and n additional edges). We will show by induction that
Tn \ {e} = T ′n \ {e0}, where e denotes the edge of maximal weight on the path from u to v in T .

�e base case n = 0 clearly holds since T0 \ {e} = ∅ \ {e} = ∅ and T ′0 \ {e0} = {e0} \ {e0} = ∅. Let
n ∈ N and suppose by induction that Tn\{e} = T ′n\{e0}. We will prove that Tn+1\{e} = T ′n+1\{e0}.
Let f be the n+ 1-th edge considered (i.e. in this step Kruskal’s algorithm needs to decide if it adds f
to Tn and/or to T ′n).

Suppose �rst that f is not added to Tn. �is means that Tn ∪ {f} contains a cycle. If this cycle doesn’t
contain the edge e := ww′, then clearly there is also a cycle in T ′n ∪ {f} and thus f is also not added
to T ′n. If the cycle contains e this means in particular that e ∈ Tn. Since e is the edge of maximal
weight on the path π from u to v in T and Kruskal’s algorithm considers edges in order of increasing
weights, we must have π ⊂ Tn. Since Tn \ {e} = T ′n \ {e0}, replacing e in the cycle by the path
from w to u (on π), concatenated with e0 and the path from v to w′ (on π), we also obtain a closed
walk in T ′n ∪ {f}. �erefore f is also not added to T ′n. So in this case we have shown that indeed
Tn+1 \ {e} = Tn \ {e} = T ′n \ {e0} = T ′n+1 \ {e0}.

Now suppose that f is added to Tn but not to T ′n. Since Tn \ {e} = T ′n \ {e0}, this is only possible if
the cycle in T ′n ∪ {f} contains e0. In particular, there must be a path from u to v that uses f in

(T ′n \ {e0}) ∪ {f} = (Tn \ {e}) ∪ {f} ⊆ Tn ∪ {f}.

On the other hand, since f was added to Tn, there was no such path in Tn. �is is only possible if f
is the last edge on this path from u to v that was added by Kruskal’s algorithm, i.e. if f has maximal
weight on this path. �us, we must have f = e, which implies

Tn+1 \ {e} = (Tn ∪ {e}) \ {e} = Tn \ {e} = T ′n \ {e0} = T ′n+1 \ {e0}.

�e only remaining case is when f is added both to Tn and to T ′n. But in this case it is clear that
Tn \ {e} = T ′n \ {e0} implies Tn+1 \ {e} = T ′n+1 \ {e0}, so the proof for Algorithm 1 is complete.

Algorithm 2:

Consider Prim’s algorithm on the graph G′ with starting vertex u. Since e0 has minimal weight in
the whole graph and is incident to u, this will be the �rst edge added by Prim’s algorithm, creating a
connected component {u, v}. A�er that, it is clear that Algorithm 2 and Prim’s algorithm are doing the
exact same operations (basically Algorithm 2 is simply Prim’s algorithm inG′ with the �rst step hidden
in the initializationM ← {u, v}). So Algorithm 2 will also return T ′ minus the edge e0. �is concludes
the whole proof.
Remark. Algorithm 1 and Algorithm 2 actually both return the optimal solution of the following
problem. Given u, v ∈ V , �nd two trees Tu = (Vu, Eu), Tv = (Vv, Ev) that are subgraphs of G such
that:
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• they span the graph (i.e. Vu ∪ Vv = V ).

• u ∈ Vu and v ∈ Vv .

• their total weight
∑

e∈Eu∪Ev
w(e) is minimized subject to the above conditions.
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