
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Department Informatik
Markus Püschel David Steurer
Gleb Novikov Tommaso d’Orsi
Ulysse Schaller Rajai Nasser

Exam

Algorithmen und Datenstrukturen
January 31, 2022

DO NOT OPEN!

Last name, first name:

Student number:

With my signature I confirm that I can participate in the exam under regular conditions. I will
act honestly during the exam, and I will not use any forbidden means.

Signature:

Good luck!

T1 (23P) T2 (15P) T3 (9P) T4 (13P) Prog. (40P) Σ (100P)

Score

Corrected by

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 1

Theory Task T1.
/ 23 P

In this problem, you have to provide solutions only. You do not need to justify your answer.

a) Asymptotic notation quiz: For each of the following claims, state whether it is true or false./ 5 P

You get 1P for a correct answer, -1P for a wrong answer, 0P for a missing answer. You get at
least 0 points in total.

Assume n ≥ 4.

Solution:

Claim true false

n+ n2 = Θ(n2) � �

n100 ≤ O(2n) � �

d
√
ne∑

i=1

i3 ≥ Ω(n2) � �

1

2
n2 −

n−1∑
i=1

i ≤ O(n) � �

Suppose a1 = 1 and ai+1 ≤ O(ai) for all i. It follows that an ≤ O(n). � �

b) Search trees:/ 3 P

i) Draw a binary search tree of maximum possible depth that contains exactly the
numbers {1, 2, 3, 4, 5, 6}. The depth of the tree is the longest path from the root to any
of its leaves. (If there are multiple possible trees, draw any valid solution.)

Solution:

1

2

3

4

5

6

OR: 6

5

4

3

2

1

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 2

ii) Draw the binary search tree obtained from the following tree by performing the two
operations INSERT(45) and INSERT(35), in that order.

40

20

10 30

50

60

Solution:

40

20

10 30

35

50

45 60

iii) Draw the AVL tree that is obtained when inserting the keys 4, 2, 1, 3, 5, 6 in this order
into an empty tree (it suffices to draw only the final tree).

Solution:

4

2

1 3

5

6

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 3

c) Graph quiz: For each of the following claims, state whether it is true or false. You get 1P for/ 5 P

a correct answer, -1P for a wrong answer, 0P for a missing answer. You get at least 0 points
in total.

As a reminder, here are a few definitions:

A walk is a sequence of vertices v1, . . . , vk such that for every two consecutive vertices vi, vi+1

there exists an edge from vi to vi+1.

A simple walk v1, . . . , vk is a walk with the additional property that vi 6= vj whenever i 6= j
(i.e., all vertices are distinct).

A simple cycle v1, . . . , vk is a walk where additionally v1 = vk, vi 6= vj whenever i < j < k (i.e.,
all vertices except the endpoints are distinct), and k ≥ 4 (so v1 → v2 → v1 is not allowed).

Solution:

Claim true false

Every graph that is connected and Eulerian is bipartite. � �

In a directed graph suppose there exists a walk with vertices s and t as
endpoints. Then there exists a simple walk with vertices s and t as endpoints.

� �

In any tree T = (V,E) with |V | ≥ 10, we can always add at least one
additional edge e 6∈ E to T such that the resulting graph is bipartite
(the set of vertices must remain the same).

� �

In every undirected graph G = (V,E) with |V | = |E| there exists a simple
cycle as a subgraph.

� �

Given an undirected graph G with all degrees even, there always exists a way
to direct the edges of G (i.e., convert each edge {a, b} into either a→ b or
b→ a) such that in the resulting graph it holds that at every vertex v,
the in-degree and out-degree are equal (but this number can differ between
different vertices).

� �

d) Depth-first search: Consider the following directed graph:/ 2 P

1 6

5 2 3

7 4

i) Draw the depth-first tree resulting from a depth-first search starting from vertex 1.
Process the neighbors of a vertex in increasing order.

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 4

Solution:

1 6

5 2 3

7 4

ii) Write out all the cross edges and all the back edges (specify which ones are which).

Solution:
Back edges: 5→ 1.
Cross edges: 6→ 5, 6→ 2, 6→ 3, 7→ 5.

e) Minimum Spanning Tree: Consider the following graph:/ 2 P

a b

c

d

e f

9

7
1

4

3.5

6

2
5

8

i) Highlight the edges that are part of the minimum spanning tree. (Either in the picture
above, or you can recreate the graph below).

Solution:

a b

c

d

e f

9

7
1

4

3.5

6

2
5

8

ii) Write out all positive integers x such that we could replace the weight 3.5 of the edge
{b, e} in the above graph with x, such that the edge would be in at least one minimum
spanning tree of the resulting graph.

Solution: 1, 2, 3, 4.

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 5

f) Shortest Path Tree: Consider the following graph:/ 2 P

a b

c

d

e f

9

7
1

4

3

6

2
5

8

i) Highlight the edges that are part of the shortest-path tree rooted at vertex a (i.e., the
output of Dijkstra’s algorithm if we were to start from vertex a).

Solution:

a b

c

d

e f

9

7
1

4

3

6

2
5

8

ii) Write out all positive integers x such that we could replace the weight 8 of the edge {e, f}
in the above graph by x, such that the edge would be in at least one shortest-path tree
rooted at a of the resulting graph.

Solution: 1, 2, 3, 4, 5, 6.

g) Sorting algorithms quiz: For each of the following claims, state whether it is true or false. You/ 4 P

get 1P for a correct answer, -1P for a wrong answer, 0P for a missing answer. You get at least
0 points in total.

Solution:

Claim true false

There exists an array of length n for which the runtime of InsertionSort is Θ(n1.5). � �

There exists an array of length n for which the runtime of MergeSort is Θ(n). � �

There exists an array of length n for which the runtime of HeapSort is Θ(n2). � �

Suppose a sequence of n bits (every element is either a zero or one) is given as input.
There exists an algorithm with runtime O(n) which sorts any such sequence.

� �

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 6

Theory Task T2.
/ 15 P

In this part, you should justify your answers briefly.

a) Counting iterations: For the following code snippets, derive an expression for the number of/ 4 P

times f is called. Simplify the expression as much as possible and state it in Θ-notation as
concisely as possible.

i) Snippet 1:

Algorithm 1

for j = 1, . . . , n2 do
for k = 1, . . . , j do

f()

f()

Solution: The number of calls to f is

n2∑
j=1

((
j∑

k=1

1

)
+ 1

)
=

n2∑
j=1

(j + 1) =

 n2∑
j=1

j

+ n2 =
n2
(
n2 + 1

)
2

+ n2 =
n4

2
+

3

2
n2

which is Θ(n4).

ii) Snippet 2:

Algorithm 2

for j = 1, . . . , n do
k ← 1
while k ≤ j2 − 1 do

`← 1
while ` ≤ n do

f()
`← 2`

k ← k + 1

Solution: The number of calls to f is

n∑
j=1

j2−1∑
k=1

blog2 nc = blog2 nc

 n∑
j=1

j2−1∑
k=1

1

 = blog2 nc

 n∑
j=1

(
j2 − 1

)
= blog2 nc

 n∑
j=1

j2

− n
 = blog2 nc

(
n(n+ 1)(2n+ 1)

6
− n

)

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 7

which is Θ(n3 log n).

b) Induction: In this question, the depth of a binary tree is the length of the longest path between/ 3 P

its root and its leaves. (In particular, a tree with a single node has depth 0.) Note that

A binary tree T is called leafy if for every node v of T that is not a leaf, the left subtree or
the right subtree of v is a leaf.

Show that for all i ∈ N \ {0}, there are exactly 3 · 2i−1 leafy binary trees of depth i.

Note that there are exactly three binary trees of depth 1, namely , and .

Solution:

Base case: For i = 1, there are three leafy binary trees, namely , and .

Induction hypothesis: Let k ∈ N \ {0}. Assume that there are exactly 3 · 2k−1 leafy binary
trees of depth k.

Induction step: Consider a leafy binary tree T of depth k + 1. Since k + 1 > 0, T is not
a leaf. Let Tl and Tr be its left and right subtrees. Since T is leafy, either Tl or Tr is a leaf.
First, we observe that both Tl and Tr must be leafy: otherwise, there would exist a non-leaf
node in Tl or Tr which would have no leaf subtree, and T , which contains both Tl and Tr,
would not be leafy. Assume that Tl is a leaf. Then the depth of Tr is exactly the depth of T
minus one, i.e., k. Hence, as Tr is leafy, there are exactly 2k choices for Tr by our induction
hypothesis. Similarly, assuming that Tr is a leaf, there are exactly 2k choices for Tl. Since
the trees formed in the two cases are all pairwise distinct, we conclude that there are exactly
3 · 2k−1 + 3 · 2k−1 = 3 · 2k leafy trees of depth k + 1.

c) Cross edges/ 4 P

Let G = (V,E) be a directed graph and v ∈ V . Perform a DFS on G from v. Show that the
subgraph consisting of all cross edges of G resulting from this DFS does not contain a cycle.

Hint: First show that for any cross edge (v1, v2), v2 must have been reached by the DFS before
v1.

Solution:

Lemma: For any cross edge (v1, v2) ∈ E, v2 must have been reached by the DFS before v1.

Proof of the lemma: Assume that v1 is reached before v2. Let W = [w1, . . . , wk] be the list
of out-neighbors of v1, sorted in the ordered in which they are checked by the DFS. Since
vertex v2 must be in this list, let j such that v2 = wj . If wj has not been explored by the
DFS while processing w1, . . . , wj−1, then wj is entered after processing wj−1 using the edge
(v1, wj) = (v1, v2), and (v1, v2) is a tree edge. If wj has been explored earlier, say during the
processing of some wk with k < j, then there is a path from wk to wj in the DFS tree. Hence,
there is a path from v1 to wj through wk = v2 in the tree, and (v1, v2) is a forward edges. In
all cases, if v1 is reached before v2, (v1, v2) cannot be a back edge. Hence, if (v1, v2) ∈ E is a
cross edge, v2 must have been reached by the DFS before v1.

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 8

Now, assume there is a cycle v1, v2, . . . , vk, v1 consisting of cross edges (v1, v2), . . . , (vk, v1)
of G. For all v ∈ V , denote by pre(v) the pre-number of vertex v. By our lemma, we have
pre(v1) > pre(v2), pre(v2) > pre(v3), . . . , pre(vk) > pre(v1). This implies pre(v1) > pre(v1), a
contradiction. Hence, such a cycle cannot exist.

d) Well-colored graphs/ 4 P

Let C be a finite set of colors that contains the color Blue (i.e., Blue ∈ C) and G = (V,E)
a directed graph that has a topological ordering. Since G has a topological ordering, we can
assume without loss of generality that V = {1, . . . , k} and 1, . . . , k is a topological ordering of
V . (The vertices can always be relabeled so that this holds.)

Further, consider a coloring µ : V → C of G, i.e., a mapping from vertices of G to colors in
C. For each vertex v ∈ V , the color of v is given by µ(v).

The graph G is called well-colored by µ if and only if the following property holds:

For any path v1, . . . , vk, such that µ(v1) = Blue, we have µ(vk) 6= Blue.

Describe an algorithm that returns True if G is well-colored, and False otherwise. You can
assume that G is provided as adjacency lists.

Give the runtime complexity of your algorithm in tight big-O notation.

Solution:

Algorithm 3 Checking well-colored graphs

Input: vertices V = {1, . . . , k}, adjacency lists L = [`1, . . . , `k], coloring µ
reachable blue← bool[k] . Initialized with False

for i = 1 to k do
[w1, . . . , wp]← `i . Get all successors of vertex i
for j = 1 to p do

if reachable blue[wj] then
reachable blue[i] = True

if µ(i) == Blue then
return False

if µ(i) == Blue then
reachable blue[i] = True

return True

This algorithm has complexity O(|V | + |E|): each vertex and each edge is checked exactly
once.

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 9

Theory Task T3.
/ 9 P

An array of non-negative integers A = [a1, . . . , an] is called summy if and only if, for all i ∈
{2, . . . , n}, there exists a (possibly empty) set I ⊆ {1, . . . , i − 1} such that ai =

∑
j∈I aj . In other

terms, every integer in the array except the first one must be the sum of (distinct) integers that
precede it in the array.

For example,

� The array [2, 2, 4, 6, 0, 12] is summy, because 2 = 2, 4 = 2 + 2, 6 = 2 + 4, 12 = 2 + 4 + 6.

� The array [2, 2, 4, 6, 0, 13] is not summy, since 13 can not be written as a sum of integers from
{2, 2, 4, 6, 0}.

Provide a dynamic programming algorithm that, given an array A of length n, returns True if the
array is summy, and False otherwise. In order to obtain full points, your algorithm should have an
O(n ·maxA) runtime. Address the following aspects in your solution:

1) Definition of the DP table: What are the dimensions of the table DP [. . .] ? What is the
meaning of each entry ?

2) Computation of an entry: How can an entry be computed from the values of other entries ?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps ?

4) Extracting the solution: How can the final solution be extracted once the table has been filled
?

5) Running time: What is the running time of your algorithm ? Provide it in Θ-notation in terms
of n and maxA, and justify your answer.

Size of the DP table / Number of entries: DP is two-dimensional with indices {0, . . . , n} ×
{0, . . . ,maxA}. The total number of entries is (n+ 1)(maxA+ 1).

Meaning of a table entry: DP [i][k] is True iff there exists I ⊆ {1, . . . , i} such that k =
∑

j∈I aj .

Computation of an entry (initialization and recursion):

DP [0][k] = (k == 0)

DP [i][0] = True

DP [i][k] = DP [i− 1][k] ∧DP [i− 1][k − ai] i > 0, k > ai

Order of computation: In increasing order of i and k, e.g.

for i = 0 to n do
for k = 0 to maxA do

DP [i][k] = . . .

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 10

Extracting the result: The result is
∧n

i=2DP [i− 1][ai].

Running time: Each table update happens in constant time, and there are O(nmaxA) elements in
the table. Extracting the result takes O(n) time. The overall runtime is therefore O(nmaxA+n) =
O(nmaxA).

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 11

Theory Task T4.
/ 16 P

Tina wants to travel around Iceland by car in December. There are n towns in Iceland labeled
by 1, 2, . . . , n. For some pairs i, j ∈ {1, 2, . . . , n}, towns i and j are connected by a two-way road,
represented by {i, j}. The set of all roads is denoted with R = {{i1, j1}, {i2, j2}, . . . , {im, jm}}, with
road {ik, jk} having length Lk. If no road is blocked, the road network is such that Tina can go
from town 1 to every other town in Iceland.

However, in winter, the weather conditions in Iceland can get very bad. Unfortunately, a snowstorm
takes place before her journey. As a result, some roads are blocked at the beginning of her journey.
Let S ⊆ R be the set of roads being blocked.

As format of input, you are given the set E = {(i1, j1, b1, L1), (i2, j2, b2, L2), . . . , (im, jm, bm, Lm)} ,
where, for any k ∈ {1, 2, . . . ,m}, bk = 1 if road {ik, jk} is in S, and bk = 0 otherwise.

a) Due to the snowstorm, all roads in S are blocked. Write down the pseudocode of an algo-/ 2 P

rithm, which checks whether Tina can reach every town in Iceland starting from town 1. The
algorithm should run in time O(m). You don’t need to describe in detail how to convert a set
of edges to an adjacency list.

Solution:

We convert the list of edges to an adjacency list, and then run a DFS from node 1 that marks
all reachable vertices. We output whether all of them can be reached.

Algorithm 4

edgeList← list of edges, as given in input
visited[1 . . . n]← [false, false, . . . , false]
adj[1 . . . n]← empty adjacency list of tuples

function DFS(u)
visited[u]← true
for each (u, v, b, L) ∈ adj[u] do

if b = 0 and not visited[v] then
DFS(v)

convert edgeList to adj such that adj[u] has all tuples adjacent to u
DFS(1)
all← true if visited = [true, . . . , true]; false otherwise
Print(“Can Tina reach every town? Answer: “, all)

Grading:

� 1 P for using the DFS algorithm.

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 12

� 1 P for writting pseudocode in correct form.

� We deduct 1 P for not dealing with blocked roads.

� For (a),(b),(c),(d), we deduct 0.5 if the solution contains minor mistake. We don’t deduct
points for typos.

b) The local government wants to clear some of the blocked roads (i.e., make them passable)/ 4 P

such that Tina can reach (via passable roads only) every other town starting from town 1.
Describe an algorithm which finds the minimum total length of roads in S to be cleared, such
that Tina can arrive at every other town starting from town 1. The algorithm should run in
time O(m · log(n)).

You need to address the following aspects in your algorithm description:

� the graph algorithm used to solve this problem;

� the construction of the graph that you run this algorithm on;

� the correctness of the algorithm, i.e why any solution to the original problem gives you
a solution to the graph problem and why any solution to the graph problem gives you a
solution to the original problem

� the total running time of your algorithm.

You can directly use the algorithms covered in lecture material, and you can directly use their
running time bounds without proof.

Solution:

� We use the MST algorithm to solve this problem.

� We use the same vertices and edges as given in the original problem. Furthermore, the
weight of an edge i that is in S is its lenght Li, while the weight of edges not in S is set
to 0. We run the MST algorithm on this weighted graph.

� Let ALG be the value returned by our algorithm, and let OPT be optimal (correct)
value.

For one direction, let T be the MST. By definition, the total length of all its blocked
edges is ALG. Since the graph is connected, T spans all vertices. Hence, by clearing up
all blocked edges in T , Tina can reach all vertices (starting anywhere, even from vertex
1). Hence, OPT ≤ ALG.

For the other direction, let T ∗ be the set of edges that are cleared by the optimal solution.
By definition, their total length is OPT . Let Epassable be the set of non-blocked edges in
the original graph. The problem guarantees Tina can reach all vertices via T ∗∪Epassable.
Hence, there exists a spanning tree T ′ that is a subgraph of T ∗ ∪ Epassable, hence the
length of all blocked edges in T ′ is at most OPT . The MST will, by its minimality, have
a smaller cost. Hence, ALG ≤ OPT .

� Our algorithm (1) transforms the graph, and then (2) runs the MST algorithm. Step
(1) is easily implemented in O(m) time, while step (2) takes O(m log n) time. The total
runtime is O(m log n).

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 13

Grading:

� 1 pt for using MST algorithm;

� 1 pt for running algorithm on the correct graph; We don’t give points if the edge weights
are set to be 0 or 1.

� 1 pt for arguing the correctness of algorithm;

� 1 pt for arguing why the algorithm provided runs in time O(m log n).

� For (b),(c),(d), if your algorithm is wrong, then you don’t get the point for running time.
Also if you just state the graph algorithm running time, then 0.5 points will be deducted.

� For (b),(c) proof of correctness, you get 0.5 point if the solution contains correct idea
and 1 point if it’s convincing.

c) Due to the effort of the road authority, the roads in S are eventually not blocked anymore,/ 4 P

but they are still in unpleasant condition. Now Tina wants to begin her journey and starts
from town 1. Suppose Tina’s car travels with speed 1 on every road (i.e., it will take Lk units
of time to travel through {ik, jk}). However, whenever Tina travels through two roads in S
consecutively, she needs to make a stop and spends D amount of time for repairing her car.

For an example, suppose Tina’s car travels through roads e1 = {1, 2}, e2 = {2, 4}, e3 =
{4, 7}, e4 = {7, 10}, e5 = {10, n}. If e2, e3, e4, e5 ∈ S and e1 6∈ S, then Tina’s car needs to stop
in towns 7, 10, and it takes her 2D+L(e1) +L(e2) +L(e3) +L(e4) +L(e5) time to reach town
n, where L(e1), L(e2), . . . , L(e5) represent the lengths of roads e1, e2, . . . , e5.

Describe an algorithm which finds the shortest time for Tina to reach town n. The algorithm
should run in time O(m · log(n)) .

You need to address the following aspects in your algorithm description:

� the graph algorithm used to solve this problem;

� the construction of the graph that you run this algorithm on;

� the correctness of the algorithm, i.e why any solution to the original problem gives you
a solution to the graph problem and why any solution to the graph problem gives you a
solution to the original problem

� the total running time of your algorithm.

Hint: You want to consider a new graph with vertex set {1, 2, . . . , n}× {0, 1}, where for each
town i, {0, 1} records whether town i is reached immediately after going through a road in S.

Solution

� We use Dijkstra’s algorithm to solve this problem.

� Let G = (V,E) be the original graph given in problem. We will construct a directed
graph G′ = (V ′, E′) where V ′ = V × {0, 1}. The vertex (k, 1) represents that the last
road we used to reach k was blocked, and (k, 0) means it was not blocked.

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 14

For each non-blocked (two-way) edge (u, v, 0, L) ∈ E, we add to E′ directed edges
((u, i), (v, 0), L) and ((v, i), (u, 0), L) for both i ∈ {0, 1} (a total of 4 directed edges).

For each blocked (two-way) edge (u, v, 1, L) ∈ E, we add to E′ directed edges ((u, 0), (v, 1), L),
((u, 1), (v, 1), L+D) and ((v, 0), (u, 1), L), ((v, 1), (u, 1), L+D) (a total of 4 directed ed-
ges). Further we add edge ((u, 1), (v, 1), L) if v = n and edge ((u, 1), (v, 1), L) if v 6= n.

We start the Dijkstra from (1, 0) and return the shorter of the two paths to either (n, 0)
or (n, 1).

� Let ALG be the value returned by our algorithm, and let OPT be optimal (correct)
value.

For one direction, let P ′ = ((u0, b0), (u1, b1), . . . , (uk, bk)) be the path in G′ found by
Dijkstra. We construct P ′′ = (u0, u1, . . . , uk). By construction, P ′′ is a valid path between
1 and n in G. Furthermore, by construction, the length of P ′ is exactly the length of
P ′′ plus we add D for each time we cross two consecutive blocked edges. Therefore, the
length of P ′ is a valid solution to the problem. Therefore, OPT ≤ ALG.

For the other direction, let P ∗ = (1 = u0, u1, . . . , uk = n) be the optimal path. We
construct a path P ′ = ((u0, 0)). For i ≥ 1, if the edge {ui, ui+1) is blocked, we append
(ui, 1) to P ′ and (ui, 0) otherwise. By construction, the path P ′ exists and its total length
is OPT . By minimality of the path returned by Dijkstra, we have ALG ≤ OPT .

� Our algorithm first (1) constructs the graph, and then (2) runs the MST algorithm. Step
(1) is easily implemented in O(m) time, while step (2) takes O(m log n) time. The total
runtime is O(m log n).

Grading

� 1 pt for using Dijkstra’s algorithm;(0.5 pt for shortest path algorithm)

� 1.5 pts for constructing the correct graph(0.5 pts for correct set of vertices and 1 pt for
correct set of edges).

� 1 pts for the correctness of your algorithm(0.5 pt for either direction of proof).

� 0.5 pt for arguing the running time of provided algorithm.

d) Christina, a friend of Tina, gets a snow plow and plans to go for a road cleaning tour1. Every/ 4 P

road has two sides. During the cleaning tour, when Christina traverses a road e = {u, v} in the
direction from u to v, the side of e for this direction is cleared. As a result, she receives p(u, v)
francs (from the inhabitants living on that cleared side of road e). At the same time, traveling
along (and clearing) road e incurs a cost of c(e) francs. So she makes money by clearing a
road e from u to v if p(u, v) > c(e) and she loses money if p(u, v) < c(e).

Last year she noticed that even if all roads were blocked by snow, there was no profitable
clearing tour starting from her hometown. Christina wants to find a different town, from
which there is a profitable clearing tour if all the roads are blocked by snow.

To obtain full points for this task, you can choose to fulfill one of the following:

1A tour is a traveling path which starts and ends in the same town.

Exam Winter 2021/22 Algorithmen & Datenstrukturen page 15

� Design an algorithm running in time O(n · m), which decides whether there is such a
town (i.e., a town starting from which there is a profitable clearing tour if all the roads
are blocked by snow);

� Design an algorithm running in time O(n3), which finds all such towns.

You need to address the following aspects in your algorithm description:

� the graph algorithm used to solve this problem;

� the construction of the graph that you run this algorithm on;

� the extraction of final solution;

� the total running time of your algorithm.

Solution 1: Design an algorithm running in time O(n ·m), which decides whether there is
such a town (i.e., a town starting from which there is a profitable clearing tour if all the roads
are blocked by snow).

� We will use Bellman-Ford’s algorithm that detects if there is a negative cycle.

� We use the same set of vertices and edges as in the problem, except we set the weight of
an edge e = (u, v) to be c(e)− p(u, v).

We will report there is a profitable path iff there exists a negative cycle in our constructed
graph.

� The graph transformation takes O(m) time and running the Bellman-Ford cycle detection
takes O(m · n) time. The total runtime is O(m · n).

Solution 2: Design an algorithm running in time O(n3), which finds all such towns.

� We will use Floyd-Warshall’s algorithm to compute all-pairs shortest paths in the con-
structed graph.

� We use the same set of vertices and edges as in the problem, except we set the weight of
an edge e = (u, v) to be c(e)− p(u, v).

For each edge e = (u, v) (in the constructed graph), we will check if the weight c(e) −
p(u, v) of the edge e plus the shortest path from v to u is negative. If yes, we mark both
u and v as towns from which we can start a profitable path.

� The graph transformation takes O(m) time and running Floyd-Warshall takes O(n3)
time. The total runtime is O(n3).

Grading

� 1 pt for using Bellman-Ford’s algorithm for task 1 or Floyd-Warshall algorithm for task
2;

� 1 pts for constructing the correct graph.

� 1 pt for extracting the solution.

� 1 pt for arguing the running time of provided algorithm.

