
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 7 November 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 7 HS 22

The solutions for this sheet are submitted at the beginning of the exercise class on 14 November 2022.

Exercises that are marked by ∗ are “challenge exercises”. They do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 7.1 k-sums (1 point).

We say that an integer n ∈ N is a k-sum if it can be written as a sum n = ak1+ · · ·+akp where a1, . . . , ap
are distinct natural numbers, for some arbitrary p ∈ N.

For example, 36 is a 3-sum, since it can be written as 36 = 13 + 23 + 33.

Describe a DP algorithm that, given two integers n and k, returns True if and only if n is a k-sum. Your
algorithm should have asymptotic runtime complexity at most O(n1+ 2

k ).

Hint: The intended solution has complexity O(n1+ 1
k ).

In your solution, address the following aspects:

1. Dimensions of the DP table: What are the dimensions of the DP table?

2. Definition of the DP table: What is the meaning of each entry?

3. Computation of an entry: How can an entry be computed from the values of other entries? Specify
the base cases, i.e., the entries that do not depend on others.

4. Calculation order: In which order can entries be computed so that values needed for each entry have
been determined in previous steps?

5. Extracting the solution: How can the solution be extracted once the table has been filled?

6. Running time: What is the running time of your solution?

Exercise 7.2 Road trip.

You are planning a road trip for your summer holidays. You want to start from city C0, and follow
the only road that goes to city Cn from there. On this road from C0 to Cn, there are n − 1 other
cities C1, . . . , Cn−1 that you would be interested in visiting (all cities C1, . . . , Cn−1 are right on the
road from C0 to Cn). For each 0 ≤ i ≤ n, the city Ci is at kilometer ki of the road for some given
0 = k0 < k1 < . . . < kn−1 < kn.

You want to decide in which cities among C1, . . . , Cn−1 you will make an additional stop (you will stop
in C0 and Cn anyway). However, you do not want to drive more than d kilometers without making a
stop in some city, for some given value d > 0 (we assume that ki < ki−1 + d for all i ∈ [n] so that



this is satisfiable), and you also don’t want to travel backwards (so from some city Ci you can only go
forward to cities Cj with j > i).

(a) Provide a dynamic programming algorithm that computes the number of possible routes from C0

to Cn that satisfies these conditions, i.e., the number of allowed subsets of stop-cities. In order to
get full points, your algorithm should have O(n2) runtime.

Address the same six aspects as in Exercise 7.1 in your solution.

(b) If you know that ki > ki−1 + d/10 for every i ∈ [n], how can you turn the above algorithm into a
linear time algorithm (i.e., an algorithm that has O(n) runtime) ?

Exercise 7.3 Safe pawn lines (1 point).

On an N ×M chessboard (N being the number of rows and M the number of columns), a safe pawn
line is a set of M pawns with exactly one pawn per column of the chessboard, and such that every two
pawns from adjacent columns are located diagonally to each other. When a pawn line is not safe, it is
called unsafe.

The first two chessboards below show safe pawn lines, the latter two unsafe ones. The line on the third
chessboard is unsafe because pawns d4 and e4 are located on the same row (rather than diagonally);
the line on the fourth chessboard is unsafe because pawn a5 has no diagonal neighbor at all.

6 0Z0Z0Z
5 Z0Z0Z0
4 0Z0o0Z
3 o0o0o0
2 0o0Z0o
1 Z0Z0Z0

a b c d e f

4 pZp
3 ZpZ
2 0Z0
1 Z0Z

a b c

4 0Z0opZ
3 Z0o0Zp
2 0o0Z0Z
1 o0Z0Z0

a b c d e f

5 o0Z0Z
4 0Z0o0
3 Z0o0o
2 0o0Z0
1 Z0Z0Z

a b c d e

Describe a DP algorithm that, given N,M > 0, counts the number of safe pawn lines on an N × M
chessboard. In your solution, address the same six aspects as in Exercise 7.1. Your solution should have
complexity at most O(NM).

Exercise 7.4 String Counting (1 point).

Given a binary string S ∈ {0, 1}n of length n, let f(S) be the length of the longest substring of con-
secutive 1s. For example f(”0110001101110001”) = 3 because the string contains ”111” (underlined)
but not ”1111”. Given n and k, the goal is to count the number of binary strings S of length n where
f(S) = k.

Write the pseudocode of an algorithm that, given positive integers n and k where k ≤ n, reports the
required answer. For full points, the running time of your solution can be any polynomial in n and k
(e.g., even O(n11k20) is acceptable).

Hint: The intended solution has complexity O(nk2).

In your solution, address the same six aspects as in Exercise 7.1.

2



Exercise 7.5 Longest Snake.

You are given a game-board consisting of hexagonal fields F1, . . . , Fn. The fields contain natural num-
bers v1, . . . , vn ∈ N. Two fields are neighbors if they share a border. We call a sequence of fields
(Fi1 , . . . , Fik) a snake of length k if, for j ∈ {1, . . . , k − 1}, Fij and Fij+1 are neighbors and their
values satisfy vij+1 = vij +1. Figure ?? illustrates an example game board in which we highlighted the
longest snake.

For simplicity you can assume that Fi are represented by their indices. Also you may assume that you
know the neighbors of each field. That is, to obtain the neighbors of a field Fi you may call N (Fi),
which will return the set of the neighbors of Fi. Each call of N takes unit time.

(a) Provide a dynamic programming algorithm that, given a game-board F1, . . . , Fn, computes the
length of the longest snake.

1

2

3

3

4

5

6 7 8

1211

10

10 9

11 2

20

21

9

6

1312

1

5

Figure 1: Example of a longest snake.

Hint: Your algorithm should solve this problem using O(n log n) time, where n is the number of
hexagonal fields.

Address the same six aspects as in Exercise 7.1 in your solution.

(b) Provide an algorithm that takes as input F1, . . . Fn and a DP table from part a) and outputs the
longest snake. If there are more than one longest snake, your algorithm can output any of them.
State the running time of your algorithm in Θ-notation in terms of n.

*(c) Find a linear time algorithm that finds the longest snake. That is, provide an O(n) time algorithm
that, given a game-board F1, . . . , Fn, outputs the longest snake (if there are more than one longest
snake, your algorithm can output any of them).

3


